--- library_name: transformers language: - gn license: apache-2.0 base_model: glob-asr/wav2vec2-large-xls-r-300m-guarani-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Common Voice 16 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16 type: mozilla-foundation/common_voice_16_1 config: gn split: None args: gn metrics: - name: Wer type: wer value: 49.7001998667555 --- # Common Voice 16 This model is a fine-tuned version of [glob-asr/wav2vec2-large-xls-r-300m-guarani-small](https://huggingface.co/glob-asr/wav2vec2-large-xls-r-300m-guarani-small) on the Common Voice 16 dataset. It achieves the following results on the evaluation set: - Loss: 0.4335 - Wer: 49.7002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 3000 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.258 | 0.4955 | 500 | 0.3710 | 53.1646 | | 0.921 | 0.9911 | 1000 | 0.3282 | 49.2338 | | 0.7458 | 1.4866 | 1500 | 0.2940 | 46.7022 | | 0.6763 | 1.9822 | 2000 | 0.2628 | 44.9700 | | 0.568 | 2.4777 | 2500 | 0.2616 | 43.3711 | | 0.5414 | 2.9732 | 3000 | 0.2504 | 39.8401 | | 0.484 | 3.4688 | 3500 | 0.2462 | 41.0393 | | 0.5281 | 3.9643 | 4000 | 0.3584 | 43.5043 | | 0.5756 | 4.4599 | 4500 | 0.4220 | 44.3038 | | 0.721 | 4.9554 | 5000 | 0.4335 | 49.7002 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1