--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intent_analysis_V1_TOTAL results: [] --- # intent_analysis_V1_TOTAL This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0167 - Accuracy: 0.9969 - Precision: 0.9969 - Recall: 0.9969 - F1: 0.9969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 214 | 0.0432 | 0.9899 | 0.9899 | 0.9899 | 0.9899 | | No log | 2.0 | 428 | 0.0252 | 0.9952 | 0.9952 | 0.9952 | 0.9952 | | 0.0885 | 3.0 | 642 | 0.0263 | 0.9956 | 0.9956 | 0.9956 | 0.9956 | | 0.0885 | 4.0 | 856 | 0.0222 | 0.9962 | 0.9962 | 0.9962 | 0.9962 | | 0.0086 | 5.0 | 1070 | 0.0167 | 0.9969 | 0.9969 | 0.9969 | 0.9969 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3