--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intent_analysis results: [] --- # intent_analysis This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0440 - Accuracy: 0.9943 - Precision: 0.9943 - Recall: 0.9943 - F1: 0.9943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2284 | 1.0 | 559 | 0.1132 | 0.9814 | 0.9819 | 0.9815 | 0.9814 | | 0.085 | 2.0 | 1118 | 0.1069 | 0.9814 | 0.9818 | 0.9814 | 0.9814 | | 0.0599 | 3.0 | 1677 | 0.0752 | 0.99 | 0.9901 | 0.9900 | 0.9900 | | 0.0316 | 4.0 | 2236 | 0.0382 | 0.9943 | 0.9943 | 0.9943 | 0.9943 | | 0.0068 | 5.0 | 2795 | 0.0440 | 0.9943 | 0.9943 | 0.9943 | 0.9943 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3