Feature Extraction
Transformers
Safetensors
vision-encoder-decoder
custom_code
File size: 23,693 Bytes
a72eb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de807d
 
a72eb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b6e08
a72eb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b6e08
a72eb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b6e08
a72eb06
 
 
 
 
 
 
 
 
 
 
 
 
09b6e08
a72eb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b6e08
a72eb06
 
 
09b6e08
a72eb06
 
 
 
 
 
 
 
 
 
 
 
09b6e08
a72eb06
 
 
 
 
 
 
 
09b6e08
a72eb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import functools
import os
from typing import Optional, Tuple, Union

import torch
import transformers
from torch.nn import CrossEntropyLoss, Linear
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import (
    VisionEncoderDecoderConfig,
)
from transformers.utils import logging

from .modelling_uniformer import MultiUniFormerWithProjectionHead

logger = logging.get_logger(__name__)


class CXRRGModel(VisionEncoderDecoderModel):

    config_class = VisionEncoderDecoderConfig
    base_model_prefix = "vision_encoder_decoder"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True

    def __init__(        
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
        DefaultEncoderClass = MultiUniFormerWithProjectionHead,
        DefaultDecoderClass = transformers.LlamaForCausalLM,
    ):

        if decoder:
            assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
            assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'

        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        config.tie_word_embeddings = False

        # Initialize with config:
        PreTrainedModel.__init__(self, config)

        # Encoder:
        if encoder is None:
            encoder = DefaultEncoderClass(config=config.encoder)

        # Decoder:
        if decoder is None:
            assert not config.decoder.add_cross_attention
            decoder = DefaultDecoderClass(config=config.decoder)

        self.encoder = encoder
        self.decoder = decoder

        if self.encoder.config.to_dict() != self.config.encoder.to_dict():
            logger.warning(
                f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
                f" {self.config.encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )

        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

        assert config.decoder.is_decoder
        assert 'img_token_id' in self.decoder.config.__dict__
        assert 'pad_token_id' in self.decoder.config.__dict__
        assert 'token_type_embeddings' in self.decoder.config.__dict__

        if self.decoder.config.token_type_embeddings == 'add':
            self.token_type_embeddings = torch.nn.Embedding(self.decoder.config.num_token_types, self.decoder.config.hidden_size)

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.FloatTensor] = None,
        decoder_token_type_ids: Optional[torch.LongTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_position_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if decoder_inputs_embeds is None:
            decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)

        if encoder_outputs is None:  # Ths is for when generate() is not called; for generation, see prepare_inputs_for_generation():
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")

            encoder_outputs = self.encoder(
                pixel_values,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )  # UniFormer does not support output_attentions.

            assert decoder_inputs_embeds is not None
            decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)

            # Add image token type identifiers:
            decoder_token_type_ids = torch.cat(
                [
                    torch.full(
                        encoder_outputs[0].shape[:-1], 
                        self.decoder.config.img_token_id, 
                        dtype=decoder_token_type_ids.dtype, 
                        device=decoder_token_type_ids.device,
                    ), 
                    decoder_token_type_ids
                ], 
                dim=1,
            )  
                    
            # Position identifiers accounting for padding:
            report_position_ids = decoder_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
            report_position_ids.masked_fill_(decoder_attention_mask == 0, 1)
            decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)

            # 4D attention mask:
            decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], decoder_attention_mask)

        assert decoder_position_ids is not None
        assert decoder_attention_mask is not None
        assert decoder_token_type_ids is not None

        if self.decoder.config.token_type_embeddings == 'add':
            decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
        elif self.decoder.config.token_type_embeddings == 'inbuilt':
            kwargs_decoder['token_type_ids'] = decoder_token_type_ids

        # Forward:
        decoder_outputs = self.decoder(
            inputs_embeds=decoder_inputs_embeds,
            attention_mask=decoder_attention_mask,
            position_ids=decoder_position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Loss:
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        encoder_hidden_states = encoder_outputs[0]

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            encoder_last_hidden_state=encoder_hidden_states, 
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        special_token_ids,
        past_key_values=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        """
        Modification of: 
            https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
        """

        report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()

        if past_key_values is None:
            
            # 4D attention mask:
            decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], report_attention_mask)
            
            # Position identifiers accounting for padding:
            report_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
            report_position_ids.masked_fill_(report_attention_mask == 0, 1)
            decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
            
            # `inputs_embeds` are only to be used in the 1st generation step:
            inputs_embeds = torch.cat([encoder_outputs[0], self.decoder.get_input_embeddings()(input_ids)], dim=1)

            decoder_token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids)
            decoder_token_type_ids = torch.cat(
                [
                    torch.full(
                        encoder_outputs[0].shape[:-1], 
                        self.decoder.config.img_token_id, 
                        dtype=decoder_token_type_ids.dtype, 
                        device=decoder_token_type_ids.device,
                    ), 
                    decoder_token_type_ids,
                ], 
                dim=1,
            )  # Add image token type identifiers.

            input_dict = {
                'decoder_input_ids': input_ids, 
                'decoder_inputs_embeds': inputs_embeds, 
                'decoder_token_type_ids': decoder_token_type_ids,
            }
        else:
            
            # 4D attention mask:
            decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(encoder_outputs[1], report_attention_mask)

            # Position identifiers accounting for padding:
            decoder_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
            decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
            
            # Always place token_ids_to_token_type_ids_past before input_ids = input_ids[:, remove_prefix_length:]:
            decoder_token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids)
            decoder_position_ids = decoder_position_ids[:, -1:]

            past_length = past_key_values[0][0].shape[2]

            # Some generation methods only pass the last input ID:
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Keep only the final ID:
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

            input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}

        input_dict.update(
            {
                'decoder_attention_mask': decoder_attention_mask,
                'decoder_position_ids': decoder_position_ids,
                'encoder_outputs': encoder_outputs,
                'past_key_values': past_key_values,
                'use_cache': use_cache,
            }
        )
        return input_dict
        
    def token_ids_to_token_type_ids(self, token_ids, special_token_ids):
        """
        Extract token type identifiers from the token identifiers.

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the separation between sections.
            token_type_id_section - token type identifier for each section.

        Returns:
            token_type_ids - token type identifiers.
        """

        mbatch_size, seq_len = token_ids.shape
        token_type_ids = torch.full_like(token_ids, self.config.section_ids[0], dtype=torch.long, device=token_ids.device)

        for i, j in enumerate(special_token_ids):
            # Find first occurrence of special tokens that indicate the boundary between sections:
            cols = (token_ids == j).int().argmax(dim=1)
            rows = torch.arange(mbatch_size, device=token_ids.device)

            # https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
            cols += 1

            # Ensure that the column index is not out of bounds. If 0, then token_id not present.
            # This is safe as index 0 is always a special token (now equal to 1 due to +1):
            rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
            cols = cols[torch.logical_and(cols != 1, cols < seq_len)]

            # Indices to that correspond to the second sequence:
            if rows.nelement() != 0:
                ids = torch.stack([
                    torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
                        y, seq_len, device=token_ids.device,
                    )
                ])

                token_type_ids[ids[:, 0], ids[:, 1]] = self.config.section_ids[i + 1]

        return token_type_ids

    def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids):
        """
        Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
        token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the separation between sections.

        Returns:
            token_type_ids - token type identifiers.
        """

        token_type_ids = torch.full([token_ids.shape[0], 1], self.config.section_ids[0], dtype=torch.long, device=token_ids.device)

        # https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
        token_ids = token_ids[:, :-1]

        for i, j in enumerate(special_token_ids):

            # Find first occurrence of special token, which indicates the boundary between sections:
            exists = torch.any(token_ids == j, dim=1, keepdim=True)
            token_type_ids[exists] = self.config.section_ids[i + 1]

        return token_type_ids
    
    def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
        """
        Tokenize the reports and creates the inputs and targets for teacher forcing.

        Argument/s:
            findings - findings sections.
            impression - impression sections.
            return_token_type_ids - return the token type identifiers.
            tokenizer - Hugging Face tokenizer.
            max_len - maximum number of tokens.

        Returns:
            decoder_input_ids - the token identifiers for the input of the decoder.
            decoder_attention_mask - the attention mask for the decoder_input_ids.
            label_ids - the label token identifiers for the decoder.
        """

        # Prepare the sections for the tokenizer by placing special tokens between each section:
        reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
                  zip(findings, impression)]

        # Tokenize the report:
        tokenized = tokenizer(
            reports,
            padding='longest',
            truncation=True,
            max_length=max_len + 1,  # +1 to account for the bias between input and target.
            return_tensors='pt',
            return_token_type_ids=False,
            add_special_tokens=False,
        ).to(self.device)

        # Modify for language modelling:
        batch_dict = {

            # Labels for the decoder (shifted right by one for autoregression):
            'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),

            # Remove last token identifier to match the sequence length of the labels:
            'decoder_input_ids': tokenized['input_ids'][:, :-1],

            # Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
            'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
        }

        return batch_dict

    def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
        """
        Tokenize the reports and creates the inputs and targets for teacher forcing.

        Argument/s:
            tokenizer - Hugging Face tokenizer.
            max_len - maximum number of tokens.
            findings - findings sections.
            impression - impression sections.
            reports - prepared reports, with special tokens and report sections.

        Returns:
            decoder_input_ids - the token identifiers for the input of the decoder.
            decoder_attention_mask - the attention mask for the decoder_input_ids.
            label_ids - the label token identifiers for the decoder.
        """

        # Prepare the sections for the tokenizer by placing special tokens between each section:
        if reports is None:
            assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined." 
            reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
                    zip(findings, impression)]

        # Tokenize the report:
        tokenized = tokenizer(
            reports,
            padding='longest',
            truncation=True,
            max_length=max_len + 1,  # +1 to account for the bias between input and target.
            return_tensors='pt',
            return_token_type_ids=False,
            add_special_tokens=False,
        ).to(self.device)

        # Modify for language modelling:
        batch_dict = {

            # Labels for the decoder (shifted right by one for autoregression):
            'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),

            # Remove last token identifier to match the sequence length of the labels:
            'decoder_input_ids': tokenized['input_ids'][:, :-1],

            # Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
            'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
        }

        return batch_dict

    def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
        """
        Split the token identifiers into sections, then convert the token identifiers into strings.

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the end of each section.
            tokenizer - Hugging Face tokenizer.

        Returns:
            token_type_ids - token type identifiers.
        """

        _, seq_len = token_ids.shape

        # The number of sections is the same as the number of special_token_ids:
        num_sections = len(special_token_ids)

        sections = {k: [] for k in range(num_sections)}

        for i in token_ids:
            prev_col = 0
            for j, k in enumerate(special_token_ids):

                # The maximum sequence length was exceeded, thus no more tokens:
                if prev_col >= seq_len:
                    sections[j].append('')
                    continue

                # Find first occurrence of special tokens that indicate the boundary between sections:
                col = (i == k).int().argmax().item()

                # If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
                # the maximum sequence length):
                if col == 0:
                    col = seq_len

                # Extract section token identifiers:
                section_token_ids = i[prev_col:col]
                prev_col = col
                section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)

                sections[j].append(section_string)

        return tuple(sections.values())

    @staticmethod
    def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
    
        prompt_seq_len = non_causal_2d_attention_mask.shape[-1] 
        report_seq_len = causal_2d_attention_mask.shape[-1]
        
        non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
        causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
    
        # Upper left of attention matrix:
        upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
        upper_left = upper_left * non_causal_2d_attention_mask
        upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
        
        causal_mask = torch.tril(
            torch.ones(
                (
                    report_seq_len, 
                    report_seq_len,
                ), 
                dtype=torch.long, 
                device=causal_2d_attention_mask.device,
            ),
        )   
        
        # Lower right of attention matrix:
        lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
        lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
        lower_right = lower_right * causal_mask
        
        # Upper right of attention matrix:
        upper_right = torch.zeros(
            causal_2d_attention_mask.shape[0], 
            1, 
            prompt_seq_len, 
            report_seq_len, 
            dtype=torch.long, 
            device=causal_2d_attention_mask.device,
        )
        
        # Lower left of attention matrix:
        lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
        lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
            
        left = torch.cat((upper_left, lower_left), dim=2)
        right = torch.cat((upper_right, lower_right), dim=2)

        mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
        return mixed_causality_4d_attention_mask
    
    @staticmethod
    def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
    
        non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
        causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]

        mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
        return mixed_causality_4d_attention_mask