Feature Extraction
Transformers
Safetensors
vision-encoder-decoder
custom_code
cxrmate-rrg24 / modelling_cxrrg.py
anicolson's picture
Upload model
09b6e08 verified
raw
history blame
23.7 kB
import functools
import os
from typing import Optional, Tuple, Union
import torch
import transformers
from torch.nn import CrossEntropyLoss, Linear
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import (
VisionEncoderDecoderConfig,
)
from transformers.utils import logging
from .modelling_uniformer import MultiUniFormerWithProjectionHead
logger = logging.get_logger(__name__)
class CXRRGModel(VisionEncoderDecoderModel):
config_class = VisionEncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
DefaultEncoderClass = MultiUniFormerWithProjectionHead,
DefaultDecoderClass = transformers.LlamaForCausalLM,
):
if decoder:
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
config.tie_word_embeddings = False
# Initialize with config:
PreTrainedModel.__init__(self, config)
# Encoder:
if encoder is None:
encoder = DefaultEncoderClass(config=config.encoder)
# Decoder:
if decoder is None:
assert not config.decoder.add_cross_attention
decoder = DefaultDecoderClass(config=config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
assert config.decoder.is_decoder
assert 'img_token_id' in self.decoder.config.__dict__
assert 'pad_token_id' in self.decoder.config.__dict__
assert 'token_type_embeddings' in self.decoder.config.__dict__
if self.decoder.config.token_type_embeddings == 'add':
self.token_type_embeddings = torch.nn.Embedding(self.decoder.config.num_token_types, self.decoder.config.hidden_size)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
decoder_token_type_ids: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if decoder_inputs_embeds is None:
decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)
if encoder_outputs is None: # Ths is for when generate() is not called; for generation, see prepare_inputs_for_generation():
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
) # UniFormer does not support output_attentions.
assert decoder_inputs_embeds is not None
decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)
# Add image token type identifiers:
decoder_token_type_ids = torch.cat(
[
torch.full(
encoder_outputs[0].shape[:-1],
self.decoder.config.img_token_id,
dtype=decoder_token_type_ids.dtype,
device=decoder_token_type_ids.device,
),
decoder_token_type_ids
],
dim=1,
)
# Position identifiers accounting for padding:
report_position_ids = decoder_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
report_position_ids.masked_fill_(decoder_attention_mask == 0, 1)
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
# 4D attention mask:
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], decoder_attention_mask)
assert decoder_position_ids is not None
assert decoder_attention_mask is not None
assert decoder_token_type_ids is not None
if self.decoder.config.token_type_embeddings == 'add':
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
elif self.decoder.config.token_type_embeddings == 'inbuilt':
kwargs_decoder['token_type_ids'] = decoder_token_type_ids
# Forward:
decoder_outputs = self.decoder(
inputs_embeds=decoder_inputs_embeds,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Loss:
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
encoder_hidden_states = encoder_outputs[0]
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
encoder_last_hidden_state=encoder_hidden_states,
)
def prepare_inputs_for_generation(
self,
input_ids,
special_token_ids,
past_key_values=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
"""
Modification of:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
"""
report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()
if past_key_values is None:
# 4D attention mask:
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], report_attention_mask)
# Position identifiers accounting for padding:
report_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
# `inputs_embeds` are only to be used in the 1st generation step:
inputs_embeds = torch.cat([encoder_outputs[0], self.decoder.get_input_embeddings()(input_ids)], dim=1)
decoder_token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids)
decoder_token_type_ids = torch.cat(
[
torch.full(
encoder_outputs[0].shape[:-1],
self.decoder.config.img_token_id,
dtype=decoder_token_type_ids.dtype,
device=decoder_token_type_ids.device,
),
decoder_token_type_ids,
],
dim=1,
) # Add image token type identifiers.
input_dict = {
'decoder_input_ids': input_ids,
'decoder_inputs_embeds': inputs_embeds,
'decoder_token_type_ids': decoder_token_type_ids,
}
else:
# 4D attention mask:
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(encoder_outputs[1], report_attention_mask)
# Position identifiers accounting for padding:
decoder_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
# Always place token_ids_to_token_type_ids_past before input_ids = input_ids[:, remove_prefix_length:]:
decoder_token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids)
decoder_position_ids = decoder_position_ids[:, -1:]
past_length = past_key_values[0][0].shape[2]
# Some generation methods only pass the last input ID:
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Keep only the final ID:
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}
input_dict.update(
{
'decoder_attention_mask': decoder_attention_mask,
'decoder_position_ids': decoder_position_ids,
'encoder_outputs': encoder_outputs,
'past_key_values': past_key_values,
'use_cache': use_cache,
}
)
return input_dict
def token_ids_to_token_type_ids(self, token_ids, special_token_ids):
"""
Extract token type identifiers from the token identifiers.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
token_type_id_section - token type identifier for each section.
Returns:
token_type_ids - token type identifiers.
"""
mbatch_size, seq_len = token_ids.shape
token_type_ids = torch.full_like(token_ids, self.config.section_ids[0], dtype=torch.long, device=token_ids.device)
for i, j in enumerate(special_token_ids):
# Find first occurrence of special tokens that indicate the boundary between sections:
cols = (token_ids == j).int().argmax(dim=1)
rows = torch.arange(mbatch_size, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
cols += 1
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
# Indices to that correspond to the second sequence:
if rows.nelement() != 0:
ids = torch.stack([
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
y, seq_len, device=token_ids.device,
)
])
token_type_ids[ids[:, 0], ids[:, 1]] = self.config.section_ids[i + 1]
return token_type_ids
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids):
"""
Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
Returns:
token_type_ids - token type identifiers.
"""
token_type_ids = torch.full([token_ids.shape[0], 1], self.config.section_ids[0], dtype=torch.long, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
token_ids = token_ids[:, :-1]
for i, j in enumerate(special_token_ids):
# Find first occurrence of special token, which indicates the boundary between sections:
exists = torch.any(token_ids == j, dim=1, keepdim=True)
token_type_ids[exists] = self.config.section_ids[i + 1]
return token_type_ids
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
"""
Tokenize the reports and creates the inputs and targets for teacher forcing.
Argument/s:
findings - findings sections.
impression - impression sections.
return_token_type_ids - return the token type identifiers.
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
Returns:
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
"""
# Prepare the sections for the tokenizer by placing special tokens between each section:
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
zip(findings, impression)]
# Tokenize the report:
tokenized = tokenizer(
reports,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the bias between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False,
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict
def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
"""
Tokenize the reports and creates the inputs and targets for teacher forcing.
Argument/s:
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
findings - findings sections.
impression - impression sections.
reports - prepared reports, with special tokens and report sections.
Returns:
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
"""
# Prepare the sections for the tokenizer by placing special tokens between each section:
if reports is None:
assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined."
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
zip(findings, impression)]
# Tokenize the report:
tokenized = tokenizer(
reports,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the bias between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False,
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
"""
Split the token identifiers into sections, then convert the token identifiers into strings.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the end of each section.
tokenizer - Hugging Face tokenizer.
Returns:
token_type_ids - token type identifiers.
"""
_, seq_len = token_ids.shape
# The number of sections is the same as the number of special_token_ids:
num_sections = len(special_token_ids)
sections = {k: [] for k in range(num_sections)}
for i in token_ids:
prev_col = 0
for j, k in enumerate(special_token_ids):
# The maximum sequence length was exceeded, thus no more tokens:
if prev_col >= seq_len:
sections[j].append('')
continue
# Find first occurrence of special tokens that indicate the boundary between sections:
col = (i == k).int().argmax().item()
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
# the maximum sequence length):
if col == 0:
col = seq_len
# Extract section token identifiers:
section_token_ids = i[prev_col:col]
prev_col = col
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
sections[j].append(section_string)
return tuple(sections.values())
@staticmethod
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
report_seq_len = causal_2d_attention_mask.shape[-1]
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
# Upper left of attention matrix:
upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
upper_left = upper_left * non_causal_2d_attention_mask
upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
causal_mask = torch.tril(
torch.ones(
(
report_seq_len,
report_seq_len,
),
dtype=torch.long,
device=causal_2d_attention_mask.device,
),
)
# Lower right of attention matrix:
lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
lower_right = lower_right * causal_mask
# Upper right of attention matrix:
upper_right = torch.zeros(
causal_2d_attention_mask.shape[0],
1,
prompt_seq_len,
report_seq_len,
dtype=torch.long,
device=causal_2d_attention_mask.device,
)
# Lower left of attention matrix:
lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
left = torch.cat((upper_left, lower_left), dim=2)
right = torch.cat((upper_right, lower_right), dim=2)
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
return mixed_causality_4d_attention_mask
@staticmethod
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
return mixed_causality_4d_attention_mask