from transformers import PreTrainedModel | |
#from timm.models.resnet import BasicBlock, Bottleneck, ResNet | |
from .configuration_scgpt import ScgptConfig | |
#BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} | |
class ScgptModel(PreTrainedModel): | |
config_class = ScgptConfig | |
def __init__(self, config): | |
super().__init__(config) | |
#block_layer = BLOCK_MAPPING[config.block_type] | |
#self.model = ScgptModel( | |
# block_layer, | |
# config.layers, | |
# num_classes=config.num_classes, | |
# in_chans=config.input_channels, | |
# cardinality=config.cardinality, | |
# base_width=config.base_width, | |
# stem_width=config.stem_width, | |
# stem_type=config.stem_type, | |
# avg_down=config.avg_down, | |
#) | |
self.model = None | |
def forward(self, tensor): | |
#return self.model.forward_features(tensor) | |
return None |