|
from typing import Dict, List, Any |
|
import PIL |
|
import torch |
|
import base64 |
|
import os |
|
import io |
|
from transformers import ViTImageProcessor, ViTModel |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
self.model = ViTModel.from_pretrained( |
|
pretrained_model_name_or_path=path, |
|
config=os.path.join(path, 'config.json') |
|
) |
|
self.model.eval() |
|
self.model = self.model.to(device) |
|
|
|
self.processor = ViTImageProcessor.from_pretrained( |
|
pretrained_model_name_or_path=os.path.join( |
|
path, 'preprocessor_config.json') |
|
) |
|
|
|
def __call__(self, data: Any) -> Dict[str, List[float]]: |
|
""" |
|
Args: |
|
data (:dict | str:): |
|
Includes the input data and the parameters for the inference. |
|
Inputs should be an image encoded in base 64. |
|
Return: |
|
A :obj:`dict`:. The object returned should be a dict like |
|
{"feature_vector": [0.6331314444541931,...,-0.7866355180740356,]} containing : |
|
- "feature_vector": A list of floats corresponding to the image embedding. |
|
""" |
|
|
|
image = PIL.Image.open(io.BytesIO(base64.b64decode(data))) |
|
inputs = self.processor(images=image, return_tensors="pt") |
|
outputs = self.model(**inputs) |
|
feature_vector = outputs.last_hidden_state[0, 0].tolist() |
|
|
|
return {"feature_vector": feature_vector} |
|
|