File size: 2,063 Bytes
c69c871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-et-ERR2020-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-et-ERR2020-v2
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2913
- Wer: 16.5773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.2158 | 0.1 | 1000 | 0.3205 | 23.8154 |
| 0.0897 | 0.2 | 2000 | 0.2961 | 18.3340 |
| 0.0785 | 0.3 | 3000 | 0.2839 | 17.5230 |
| 0.0653 | 0.4 | 4000 | 0.2847 | 17.8752 |
| 0.0541 | 0.5 | 5000 | 0.2906 | 15.2645 |
| 0.0566 | 0.6 | 6000 | 0.2845 | 15.2081 |
| 0.051 | 0.7 | 7000 | 0.2888 | 14.4668 |
| 0.049 | 1.03 | 8000 | 0.2927 | 15.3130 |
| 0.044 | 1.13 | 9000 | 0.2915 | 13.8640 |
| 0.0379 | 1.23 | 10000 | 0.2913 | 16.5773 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+rocm5.1.1
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|