File size: 1,843 Bytes
4194ec2 3f9aba2 4194ec2 0f856f1 44e5212 4194ec2 3f9aba2 4194ec2 a4f0ef7 44e5212 a4f0ef7 4194ec2 16dee59 4194ec2 44e5212 a4f0ef7 4194ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: my_fancy_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_fancy_model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6695
- Accuracy: 0.65
- Recall: 0.5
- Precision: 0.325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|
| No log | 1.0 | 7 | 0.7025 | 0.65 | 0.5 | 0.325 |
| No log | 2.0 | 14 | 0.6968 | 0.65 | 0.5 | 0.325 |
| No log | 3.0 | 21 | 0.8017 | 0.65 | 0.5 | 0.325 |
| No log | 4.0 | 28 | 0.6836 | 0.65 | 0.5 | 0.325 |
| No log | 5.0 | 35 | 0.6695 | 0.65 | 0.5 | 0.325 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|