--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: ks split: validation args: ks metrics: - name: Accuracy type: accuracy value: 0.9010002942041777 --- # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.5155 - Accuracy: 0.9010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4701 | 1.0 | 100 | 1.4821 | 0.6209 | | 1.1434 | 2.0 | 200 | 1.0657 | 0.6649 | | 0.8086 | 3.0 | 300 | 0.7112 | 0.8320 | | 0.659 | 4.0 | 400 | 0.5686 | 0.8789 | | 0.5987 | 5.0 | 500 | 0.5155 | 0.9010 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3