File size: 5,941 Bytes
afe420d 978a904 afe420d 8ca9fa4 afe420d 82647f6 afe420d 6a46c2f afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d d0976af afe420d 49c5e61 afe420d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
license: mit
tags:
- vidore
---
# ColFlor: Towards BERT-Size Vision-Language Document Retrieval Models
In June 2024, [ColPali](https://arxiv.org/abs/2407.01449) was introduced as an OCR-free document retrieval model, built over [PaliGemma](https://arxiv.org/abs/2407.07726), shifting the paradigm of PDF document retrieval by directly processing images instead of using error-prone and resource-heavy OCR pipelines. However, with three billion parameters, ColPali might be computationally expensive, especially for large document databases. In contrast, text retrieval models like [ColBERT](https://arxiv.org/abs/2004.12832) are more efficient with just a few hundred million parameters, but they require error-prone and expensive OCR pipelines to. To bridge this gap, we introduce ColFlor, an OCR-free visual document retrieval model with only 174 million parameters. ColFlor is 17 times smaller than ColPali, 9.8 times faster in encoding queries and 5.25 faster in encoding images, with only a 1.8% drop in performance on text-rich English documents.
<p align="center"><img width=800 src="https://github.com/AhmedMasryKU/colflor/blob/main/assets/colflor_n32.png?raw=true"/></p>
More details about the model can be found in the [ColFlor blogpost](https://huggingface.co/blog/ahmed-masry/colflor)
## Usage
First, you need to clone the github repo and install the dependencies as follows
```bash
git clone https://github.com/AhmedMasryKU/colflor
cd colflor
pip install -e .
```
Then, you can run the following inference code:
```python
import pprint
from typing import List, cast
import torch
from datasets import Dataset, load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from colpali_engine.models import ColFlor
from colpali_engine.models import ColFlorProcessor
from colpali_engine.utils.processing_utils import BaseVisualRetrieverProcessor
from colpali_engine.utils.torch_utils import ListDataset, get_torch_device
def main():
"""
Example script to run inference with ColFlor.
"""
device = get_torch_device("auto")
print(f"Device used: {device}")
# Model name
model_name = "ahmed-masry/ColFlor"
# Load model
model = ColFlor.from_pretrained(
model_name,
#torch_dtype=torch.bfloat16,
device_map=device,
).eval()
# Load processor
processor = cast(ColFlorProcessor, ColFlorProcessor.from_pretrained(model_name))
if not isinstance(processor, BaseVisualRetrieverProcessor):
raise ValueError("Processor should be a BaseVisualRetrieverProcessor")
# NOTE: Only the first 16 images are used for demonstration purposes
dataset = cast(Dataset, load_dataset("vidore/docvqa_test_subsampled", split="test[:16]"))
images = dataset["image"]
# Select a few queries for demonstration purposes
query_indices = [12, 15]
queries = [dataset[idx]["query"] for idx in query_indices]
print("Selected queries:")
pprint.pprint(dict(zip(query_indices, queries)))
# Run inference - docs
dataloader = DataLoader(
dataset=ListDataset[str](images),
batch_size=4,
shuffle=False,
collate_fn=lambda x: processor.process_images(x),
)
ds: List[torch.Tensor] = []
for batch_doc in tqdm(dataloader):
with torch.no_grad():
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
# Run inference - queries
dataloader = DataLoader(
dataset=ListDataset[str](queries),
batch_size=4,
shuffle=False,
collate_fn=lambda x: processor.process_queries(x),
)
qs: List[torch.Tensor] = []
for batch_query in dataloader:
with torch.no_grad():
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
# Run scoring
scores = processor.score(qs, ds).cpu().numpy()
idx_top_1 = scores.argmax(axis=1)
print("Indices of the top-1 retrieved documents for each query:", idx_top_1)
# Sanity check
if idx_top_1.tolist() == query_indices:
print("The top-1 retrieved documents are correct.")
else:
print("The top-1 retrieved documents are incorrect.")
return
if __name__ == "__main__":
typer.run(main)
```
## Limitations
- **Figures**: While ColFlor exhibits reasonable performance on figures, there's a relatively large gap in performance between it and larger models such as ColPali.
- **Multilinguality**: The current version of the model only supports the Engligh language and performs poorly on other languages.
## License
We release this model under the MIT license.
## Contact
If you have any questions about this work, feel free to reach out to **Ahmed Masry** at **[email protected]** or **[email protected]**.
## Acknowledgement
This work was carried out at the Intelligent Visualization Lab at York University in Canada. It was supported by the Natural Sciences Engineering Research Council (NSERC) of Canada and Canada Foundation for Innovation (CFI). Additionally, it received support through a GCP credits award from Google's PaliGemma Academic Program.
We appreciate the well-documented training and evaluation GitHub repositories provided by the ColPali team, which were essential in our model development.
This model card is adapted from [ColPali Model Card](https://huggingface.co/vidore/colpali)
## Citation
If you plan to use ColFlor in your research, please consider citing us as follows:
```bibtex
@misc{masry2024colflor,
title={ColFlor: Towards BERT-Size Vision-Language Document Retrieval Models},
url={https://huggingface.co/blog/ahmed-masry/colflor},
author={Masry, Ahmed},
month={October},
year={2024}
}
``` |