ahmeddbahaa
commited on
Commit
•
b0c131a
1
Parent(s):
e52d39b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- summarization
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wiki_lingua
|
7 |
+
model-index:
|
8 |
+
- name: mbart-large-50-finetuned-ar-wikilingua
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# mbart-large-50-finetuned-ar-wikilingua
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the wiki_lingua dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 4.0001
|
20 |
+
- Rouge-1: 22.11
|
21 |
+
- Rouge-2: 7.33
|
22 |
+
- Rouge-l: 19.75
|
23 |
+
- Gen Len: 59.4
|
24 |
+
- Bertscore: 68.9
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 1e-06
|
44 |
+
- train_batch_size: 4
|
45 |
+
- eval_batch_size: 4
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 250
|
50 |
+
- num_epochs: 8
|
51 |
+
- label_smoothing_factor: 0.1
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
|
57 |
+
| 5.2671 | 1.0 | 5111 | 4.6414 | 18.37 | 5.63 | 16.32 | 96.39 | 65.12 |
|
58 |
+
| 4.5375 | 2.0 | 10222 | 4.3144 | 20.49 | 6.64 | 18.35 | 95.44 | 65.79 |
|
59 |
+
| 4.308 | 3.0 | 15333 | 4.1592 | 21.16 | 7.09 | 18.85 | 67.75 | 67.65 |
|
60 |
+
| 4.1562 | 4.0 | 20444 | 4.0812 | 21.59 | 7.31 | 19.42 | 68.66 | 68.02 |
|
61 |
+
| 4.0749 | 5.0 | 25555 | 4.0409 | 21.99 | 7.42 | 19.82 | 66.4 | 68.05 |
|
62 |
+
| 4.0271 | 6.0 | 30666 | 4.0183 | 22.04 | 7.42 | 19.64 | 56.88 | 68.95 |
|
63 |
+
| 3.9991 | 7.0 | 35777 | 4.0042 | 22.05 | 7.35 | 19.71 | 55.75 | 68.94 |
|
64 |
+
| 3.9833 | 8.0 | 40888 | 4.0001 | 22.12 | 7.39 | 19.78 | 55.72 | 69.0 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.18.0
|
70 |
+
- Pytorch 1.10.0+cu111
|
71 |
+
- Datasets 2.1.0
|
72 |
+
- Tokenizers 0.12.1
|