ahmeddbahaa commited on
Commit
ca46ea8
1 Parent(s): 4250676

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - summarization
4
+ - ar
5
+ - encoder-decoder
6
+ - xlm-roberta
7
+ - Abstractive Summarization
8
+ - roberta
9
+ - generated_from_trainer
10
+ datasets:
11
+ - xlsum
12
+ model-index:
13
+ - name: xlmroberta2xlmroberta-finetune-summarization-ar
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # xlmroberta2xlmroberta-finetune-summarization-ar
21
+
22
+ This model is a fine-tuned version of [](https://huggingface.co/) on the xlsum dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 4.1298
25
+ - Rouge-1: 21.51
26
+ - Rouge-2: 8.14
27
+ - Rouge-l: 19.33
28
+ - Gen Len: 19.98
29
+ - Bertscore: 71.02
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 4
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 8
53
+ - total_train_batch_size: 32
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 250
57
+ - num_epochs: 10
58
+ - label_smoothing_factor: 0.1
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
63
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
64
+ | 8.0645 | 1.0 | 1172 | 7.3567 | 8.22 | 0.66 | 7.94 | 20.0 | 58.18 |
65
+ | 7.2042 | 2.0 | 2344 | 6.6058 | 12.12 | 2.19 | 11.4 | 20.0 | 63.24 |
66
+ | 6.4168 | 3.0 | 3516 | 5.8784 | 16.46 | 4.31 | 15.15 | 20.0 | 66.3 |
67
+ | 5.4622 | 4.0 | 4688 | 4.7931 | 17.6 | 5.87 | 15.9 | 19.99 | 69.21 |
68
+ | 4.7829 | 5.0 | 5860 | 4.4418 | 19.17 | 6.74 | 17.22 | 19.98 | 70.23 |
69
+ | 4.4829 | 6.0 | 7032 | 4.2950 | 19.8 | 7.11 | 17.74 | 19.98 | 70.38 |
70
+ | 4.304 | 7.0 | 8204 | 4.2155 | 20.71 | 7.59 | 18.56 | 19.98 | 70.66 |
71
+ | 4.1778 | 8.0 | 9376 | 4.1632 | 21.1 | 7.94 | 18.99 | 19.98 | 70.86 |
72
+ | 4.0886 | 9.0 | 10548 | 4.1346 | 21.44 | 8.03 | 19.28 | 19.98 | 70.93 |
73
+ | 4.0294 | 10.0 | 11720 | 4.1298 | 21.51 | 8.14 | 19.33 | 19.98 | 71.02 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.19.4
79
+ - Pytorch 1.11.0+cu113
80
+ - Datasets 2.2.2
81
+ - Tokenizers 0.12.1