File size: 3,674 Bytes
cca586b
 
 
 
 
 
905c8b8
cca586b
 
905c8b8
a5a77b8
 
 
 
 
 
 
 
31a41c7
 
 
c9fd291
 
 
89f2b1f
 
 
3bf47ab
 
 
8d591c0
 
 
642d8da
 
 
2be1a38
 
 
0b06305
 
 
cca586b
 
45b950b
fbaf36f
cca586b
4d3a18f
de8c8a3
 
4d3a18f
233c4a9
 
 
 
 
025cfff
de8c8a3
 
 
 
 
 
 
 
 
 
 
 
 
cca586b
4d3a18f
 
cca586b
4d3a18f
ae627a8
cca586b
a67a708
 
de8c8a3
 
 
 
 
 
 
 
 
 
cca586b
4d3a18f
de8c8a3
 
 
 
4d3a18f
 
de8c8a3
 
 
 
 
 
cca586b
ebe1b84
cca586b
 
 
 
 
 
 
 
 
 
 
 
4d3a18f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
base_model: microsoft/deberta-v3-large
model-index:
- name: deberta-v3-large-finetuned-squadv2
  results:
  - task:
      type: question-answering
      name: Extractive Question Answering
    dataset:
      name: SQuAD2.0
      type: squad_v2
      split: validation[:11873]
    metrics:
    - type: exact
      value: 88.69704371262529
      name: eval_exact
    - type: f1
      value: 91.51550564529175
      name: eval_f1
    - type: HasAns_exact
      value: 83.70445344129554
      name: HasAns_exact
    - type: HasAns_f1
      value: 89.34945994037624
      name: HasAns_f1
    - type: HasAns_total
      value: 5928
      name: HasAns_total
    - type: NoAns_exact
      value: 93.6753574432296
      name: NoAns_exact
    - type: NoAns_f1
      value: 93.6753574432296
      name: NoAns_f1
    - type: NoAns_total
      value: 5945
      name: NoAns_total
---
# deberta-v3-large-finetuned-squadv2
This model is a version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) fine-tuned on the SQuAD version 2.0 dataset.
Fine-tuning & evaluation on a NVIDIA Titan RTX - 24GB GPU took 15 hours.

##  Results from 2023 ICLR paper, "DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing", by Pengcheng He, et. al.
- 'EM' : 89.0
- 'F1' : 91.5

## Results calculated with:
```python
metrics = evaluate.load("squad_v2")
squad_v2_metrics = metrics.compute(predictions = formatted_predictions, references = references)
```
## for this fine-tuning:
- 'exact' : 88.70,
- 'f1' : 91.52, 
- 'total' : 11873,
- 'HasAns_exact' : 83.70,
- 'HasAns_f1' : 89.35,
- 'HasAns_total' : 5928,
- 'NoAns_exact' : 93.68,
- 'NoAns_f1' : 93.68,
- 'NoAns_total' : 5945,
- 'best_exact' : 88.70,
- 'best_exact_thresh' : 0.0,
- 'best_f1' : 91.52,
- 'best_f1_thresh' : 0.0}

## Model description
For the authors' models, code & detailed information see:  https://github.com/microsoft/DeBERTa

## Intended uses
Extractive question answering on a given context

### Fine-tuning hyperparameters
The following hyperparameters, as suggested by the 2023 ICLR paper noted above, were used during fine-tuning:
- learning_rate : 1e-05
- train_batch_size : 8
- eval_batch_size : 8
- seed : 42
- gradient_accumulation_steps : 8
- total_train_batch_size : 64
- optimizer : Adam with betas = (0.9, 0.999) and epsilon = 1e-06
- lr_scheduler_type : linear
- lr_scheduler_warmup_steps : 1000
- training_steps : 5200

### Framework versions
- Transformers : 4.35.0.dev0
- Pytorch : 2.1.0+cu121
- Datasets : 2.14.5
- Tokenizers : 0.14.0

### System
- CPU : Intel(R) Core(TM) i9-9900K - 32GB RAM
- Python version : 3.11.5 [GCC 11.2.0] (64-bit runtime)
- Python platform : Linux-5.15.0-86-generic-x86_64-with-glibc2.35
- GPU : NVIDIA TITAN RTX - 24GB Memory
- CUDA runtime version : 12.1.105
- Nvidia driver version : 535.113.01

### Fine-tuning (Training) results before/after the best model (Step 3620)
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5323        | 1.72  | 3500 | 0.5860          |
| 0.5129        | 1.73  | 3520 | 0.5656          |
| 0.5441        | 1.74  | 3540 | 0.5642          |
| 0.5624        | 1.75  | 3560 | 0.5873          |
| 0.4645        | 1.76  | 3580 | 0.5891          |
| 0.5577        | 1.77  | 3600 | 0.5816          |
| 0.5199        | 1.78  | 3620 | 0.5579          |
| 0.5061        | 1.79  | 3640 | 0.5837          |
| 0.484         | 1.79  | 3660 | 0.5721          |
| 0.5095        | 1.8   | 3680 | 0.5821          |
| 0.5342        | 1.81  | 3700 | 0.5602          |