--- license: apache-2.0 tags: - Kandinsky - text-image - text2image - diffusion - latent diffusion - mCLIP-XLMR - mT5 --- # Kandinsky 2.0 Kandinsky 2.0 — the first multilingual text2image model. [Open In Colab](https://colab.research.google.com/drive/1uPg9KwGZ2hJBl9taGA_3kyKGw12Rh3ij?usp=sharing) [GitHub repository](https://github.com/ai-forever/Kandinsky-2.0) **UNet size: 1.2B parameters** ![NatallE.png](https://s3.amazonaws.com/moonup/production/uploads/1669132577749-5f91b1208a61a359f44e1851.png) It is a latent diffusion model with two multi-lingual text encoders: * mCLIP-XLMR (560M parameters) * mT5-encoder-small (146M parameters) These encoders and multilingual training datasets unveil the real multilingual text2image generation experience! ![header.png](https://s3.amazonaws.com/moonup/production/uploads/1669132825912-5f91b1208a61a359f44e1851.png) # How to use ```python pip install "git+https://github.com/ai-forever/Kandinsky-2.0.git" from kandinsky2 import get_kandinsky2 model = get_kandinsky2('cuda', task_type='text2img') images = model.generate_text2img('кошка в космосе', batch_size=4, h=512, w=512, num_steps=75, denoised_type='dynamic_threshold', dynamic_threshold_v=99.5, sampler='ddim_sampler', ddim_eta=0.01, guidance_scale=10) ``` # Authors + Arseniy Shakhmatov: [Github](https://github.com/cene555), [Blog](https://t.me/gradientdip) + Anton Razzhigaev: [Github](https://github.com/razzant), [Blog](https://t.me/abstractDL) + Aleksandr Nikolich: [Github](https://github.com/AlexWortega), [Blog](https://t.me/lovedeathtransformers) + Vladimir Arkhipkin: [Github](https://github.com/oriBetelgeuse) + Igor Pavlov: [Github](https://github.com/boomb0om) + Andrey Kuznetsov: [Github](https://github.com/kuznetsoffandrey) + Denis Dimitrov: [Github](https://github.com/denndimitrov)