# ruclip-vit-base-patch32-384 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `150M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `512` * Transformer Heads: `8` * Image Size: `384` * Vision Layers: `12` * Vision Width: `768` * Vision Patch Size: `32` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-base-patch32-384", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:----------------------------| | Food101 | acc | 0.642 | | CIFAR10 | acc | 0.862 | | CIFAR100 | acc | 0.529 | | Birdsnap | acc | 0.161 | | SUN397 | acc | 0.510 | | Stanford Cars | acc | 0.572 | | DTD | acc | 0.390 | | MNIST | acc | 0.404 | | STL10 | acc | 0.946 | | PCam | acc | 0.506 | | CLEVR | acc | 0.188 | | Rendered SST2 | acc | 0.508 | | ImageNet | acc | 0.451 | | FGVC Aircraft | mean-per-class | 0.053 | | Oxford Pets | mean-per-class | 0.587 | | Caltech101 | mean-per-class | 0.834 | | Flowers102 | mean-per-class | 0.449 | | HatefulMemes | roc-auc | 0.537 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)