Update README.md
Browse files
README.md
CHANGED
@@ -26,8 +26,17 @@ licenses:
|
|
26 |
|
27 |
# MultiIndicQuestionGenerationSS
|
28 |
|
29 |
-
|
30 |
-
see the [paper](https://arxiv.org/abs/2203.05437).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
## Using this model in `transformers`
|
@@ -35,38 +44,45 @@ see the [paper](https://arxiv.org/abs/2203.05437).
|
|
35 |
```
|
36 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
37 |
from transformers import AlbertTokenizer, AutoTokenizer
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Or use
|
|
|
|
|
|
|
|
|
|
|
42 |
# Some initial mapping
|
43 |
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
|
44 |
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
|
45 |
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
|
46 |
-
# To get lang_id use any of ['<2as>', '<2bn>', '<
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# For generation. Pardon the messiness. Note the decoder_start_token_id.
|
|
|
51 |
model.eval() # Set dropouts to zero
|
|
|
52 |
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
|
|
53 |
# Decode to get output strings
|
54 |
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
55 |
-
|
56 |
-
#
|
57 |
-
|
58 |
-
inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
59 |
-
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
60 |
-
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
61 |
-
print(decoded_output) # I am happy
|
62 |
-
inp = tokenizer("मैं [MASK] हूठ</s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
63 |
-
model_output=model.generate(inp, use_cache=True, num_beams=4,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
64 |
-
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
65 |
-
print(decoded_output) # मैं जानता हूà¤
|
66 |
-
inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
67 |
-
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3,num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
68 |
-
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
69 |
-
print(decoded_output) # मला ओळखलं पाहिजे
|
70 |
```
|
71 |
|
72 |
## Benchmarks
|
@@ -88,7 +104,6 @@ ta | 23.49
|
|
88 |
te | 25.81
|
89 |
|
90 |
|
91 |
-
|
92 |
## Citation
|
93 |
|
94 |
If you use this model, please cite the following paper:
|
|
|
26 |
|
27 |
# MultiIndicQuestionGenerationSS
|
28 |
|
29 |
+
MultiIndicQuestionGenerationSS is a multilingual, sequence-to-sequence pre-trained model, a [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details,
|
30 |
+
see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationSS to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationSS are:
|
31 |
+
|
32 |
+
<ul>
|
33 |
+
<li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
|
34 |
+
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li>
|
35 |
+
<li> Fine-tuned on large Indic language corpora (770 K examples). </li>
|
36 |
+
<li> Unlike ai4bharat/MultiIndicQuestionGenerationUnified, each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li>
|
37 |
+
</ul>
|
38 |
+
|
39 |
+
You can read more about MultiIndicQuestionGenerationSS in this <a href="https://arxiv.org/abs/2203.05437">paper</a>.
|
40 |
|
41 |
|
42 |
## Using this model in `transformers`
|
|
|
44 |
```
|
45 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
46 |
from transformers import AlbertTokenizer, AutoTokenizer
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
|
49 |
+
|
50 |
+
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
|
51 |
+
|
52 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")
|
53 |
+
|
54 |
+
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")
|
55 |
+
|
56 |
# Some initial mapping
|
57 |
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
|
58 |
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
|
59 |
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
|
60 |
+
# To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
|
61 |
+
|
62 |
+
# First tokenize the input and outputs. The format below is how IndicBARTSS was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
|
63 |
+
inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
|
64 |
+
|
65 |
+
out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]])
|
66 |
+
|
67 |
+
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
|
68 |
+
|
69 |
+
# For loss
|
70 |
+
model_outputs.loss ## This is not label smoothed.
|
71 |
+
|
72 |
+
# For logits
|
73 |
+
model_outputs.logits
|
74 |
|
75 |
# For generation. Pardon the messiness. Note the decoder_start_token_id.
|
76 |
+
|
77 |
model.eval() # Set dropouts to zero
|
78 |
+
|
79 |
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
80 |
+
|
81 |
# Decode to get output strings
|
82 |
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
83 |
+
|
84 |
+
print(decoded_output) # 7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था।
|
85 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
```
|
87 |
|
88 |
## Benchmarks
|
|
|
104 |
te | 25.81
|
105 |
|
106 |
|
|
|
107 |
## Citation
|
108 |
|
109 |
If you use this model, please cite the following paper:
|