krsnaman commited on
Commit
ed723ba
1 Parent(s): 979f396

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -25
README.md CHANGED
@@ -26,8 +26,17 @@ licenses:
26
 
27
  # MultiIndicQuestionGenerationSS
28
 
29
- This repository contains the [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint finetuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For finetuning details,
30
- see the [paper](https://arxiv.org/abs/2203.05437).
 
 
 
 
 
 
 
 
 
31
 
32
 
33
  ## Using this model in `transformers`
@@ -35,38 +44,45 @@ see the [paper](https://arxiv.org/abs/2203.05437).
35
  ```
36
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
37
  from transformers import AlbertTokenizer, AutoTokenizer
38
- tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
39
- # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
40
- model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS")
41
- # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS")
 
 
 
 
 
42
  # Some initial mapping
43
  bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
44
  eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
45
  pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
46
- # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
47
- # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
48
- inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  # For generation. Pardon the messiness. Note the decoder_start_token_id.
 
51
  model.eval() # Set dropouts to zero
 
52
  model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
 
53
  # Decode to get output strings
54
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
55
- print(decoded_output) # I am a boy
56
- # Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library.
57
- # What if we mask?
58
- inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
59
- model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
60
- decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
61
- print(decoded_output) # I am happy
62
- inp = tokenizer("मैं [MASK] हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
63
- model_output=model.generate(inp, use_cache=True, num_beams=4,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
64
- decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
65
- print(decoded_output) # मैं जानता हूँ
66
- inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
67
- model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3,num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
68
- decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
69
- print(decoded_output) # मला ओळखलं पाहिजे
70
  ```
71
 
72
  ## Benchmarks
@@ -88,7 +104,6 @@ ta | 23.49
88
  te | 25.81
89
 
90
 
91
-
92
  ## Citation
93
 
94
  If you use this model, please cite the following paper:
 
26
 
27
  # MultiIndicQuestionGenerationSS
28
 
29
+ MultiIndicQuestionGenerationSS is a multilingual, sequence-to-sequence pre-trained model, a [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details,
30
+ see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationSS to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationSS are:
31
+
32
+ <ul>
33
+ <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
34
+ <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li>
35
+ <li> Fine-tuned on large Indic language corpora (770 K examples). </li>
36
+ <li> Unlike ai4bharat/MultiIndicQuestionGenerationUnified, each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li>
37
+ </ul>
38
+
39
+ You can read more about MultiIndicQuestionGenerationSS in this <a href="https://arxiv.org/abs/2203.05437">paper</a>.
40
 
41
 
42
  ## Using this model in `transformers`
 
44
  ```
45
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
46
  from transformers import AlbertTokenizer, AutoTokenizer
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
49
+
50
+ # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
51
+
52
+ model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")
53
+
54
+ # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")
55
+
56
  # Some initial mapping
57
  bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
58
  eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
59
  pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
60
+ # To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
61
+
62
+ # First tokenize the input and outputs. The format below is how IndicBARTSS was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
63
+ inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
64
+
65
+ out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]])
66
+
67
+ model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
68
+
69
+ # For loss
70
+ model_outputs.loss ## This is not label smoothed.
71
+
72
+ # For logits
73
+ model_outputs.logits
74
 
75
  # For generation. Pardon the messiness. Note the decoder_start_token_id.
76
+
77
  model.eval() # Set dropouts to zero
78
+
79
  model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
80
+
81
  # Decode to get output strings
82
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
83
+
84
+ print(decoded_output) # 7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था।
85
+
 
 
 
 
 
 
 
 
 
 
 
 
86
  ```
87
 
88
  ## Benchmarks
 
104
  te | 25.81
105
 
106
 
 
107
  ## Citation
108
 
109
  If you use this model, please cite the following paper: