krsnaman commited on
Commit
3ba2183
1 Parent(s): 3ebffd4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -24
README.md CHANGED
@@ -26,8 +26,17 @@ licenses:
26
 
27
  # MultiIndicQuestionGenerationUnified
28
 
29
- This repository contains the [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint finetuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For finetuning details,
30
- see the [paper](https://arxiv.org/abs/2203.05437).
 
 
 
 
 
 
 
 
 
31
 
32
 
33
  ## Using this model in `transformers`
@@ -35,38 +44,43 @@ see the [paper](https://arxiv.org/abs/2203.05437).
35
  ```
36
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
37
  from transformers import AlbertTokenizer, AutoTokenizer
38
- tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration", do_lower_case=False, use_fast=False, keep_accents=True)
39
- # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration", do_lower_case=False, use_fast=False, keep_accents=True)
40
- model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration")
41
- # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicParaphraseGeneration")
 
 
 
42
  # Some initial mapping
43
  bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
44
  eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
45
  pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
46
- # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
 
47
  # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
48
- inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
 
 
 
 
 
 
 
 
 
49
 
50
  # For generation. Pardon the messiness. Note the decoder_start_token_id.
51
  model.eval() # Set dropouts to zero
52
- model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
 
 
53
  # Decode to get output strings
54
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
55
- print(decoded_output) # I am a boy
56
- # Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library.
57
- # What if we mask?
58
- inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
59
- model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
60
- decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
61
- print(decoded_output) # I am happy
62
- inp = tokenizer("मैं [MASK] हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
63
- model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
64
- decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
65
- print(decoded_output) # मैं जानता हूँ
66
- inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
67
- model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
68
- decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
69
- print(decoded_output) # मला ओळखलं पाहिजे
70
  ```
71
  # Note:
72
  If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script.
 
26
 
27
  # MultiIndicQuestionGenerationUnified
28
 
29
+ MultiIndicQuestionGenerationUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details,
30
+ see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationUnified to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationUnified are:
31
+
32
+ <ul>
33
+ <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
34
+ <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for fine-tuning and decoding. </li>
35
+ <li> Fine-tuned on large Indic language corpora (770 K examples). </li>
36
+ <li> All languages have been represented in Devanagari script to encourage transfer learning among the related languages. </li>
37
+ </ul>
38
+
39
+ You can read more about MultiIndicQuestionGenerationUnified in this <a href="https://arxiv.org/abs/2203.05437">paper</a>.
40
 
41
 
42
  ## Using this model in `transformers`
 
44
  ```
45
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
46
  from transformers import AlbertTokenizer, AutoTokenizer
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True)
49
+ # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True)
50
+
51
+ model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified")
52
+ # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified")
53
+
54
  # Some initial mapping
55
  bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
56
  eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
57
  pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
58
+ # To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
59
+
60
  # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
61
+ inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था।</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
62
+
63
+ out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
64
+ model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
65
+
66
+ # For loss
67
+ model_outputs.loss ## This is not label smoothed.
68
+
69
+ # For logits
70
+ model_outputs.logits
71
 
72
  # For generation. Pardon the messiness. Note the decoder_start_token_id.
73
  model.eval() # Set dropouts to zero
74
+
75
+ model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))
76
+
77
  # Decode to get output strings
78
  decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
79
+ print(decoded_output) # कब खेला जाएगा पहला मैच?
80
+
81
+ # Disclaimer
82
+ Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py).
83
+
 
 
 
 
 
 
 
 
 
 
84
  ```
85
  # Note:
86
  If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script.