Update README.md
Browse files
README.md
CHANGED
@@ -26,8 +26,17 @@ licenses:
|
|
26 |
|
27 |
# MultiIndicQuestionGenerationUnified
|
28 |
|
29 |
-
|
30 |
-
see the [paper](https://arxiv.org/abs/2203.05437).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
## Using this model in `transformers`
|
@@ -35,38 +44,43 @@ see the [paper](https://arxiv.org/abs/2203.05437).
|
|
35 |
```
|
36 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
37 |
from transformers import AlbertTokenizer, AutoTokenizer
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
# Some initial mapping
|
43 |
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
|
44 |
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
|
45 |
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
|
46 |
-
# To get lang_id use any of ['<2as>', '<2bn>', '<
|
|
|
47 |
# First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
|
48 |
-
inp = tokenizer("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# For generation. Pardon the messiness. Note the decoder_start_token_id.
|
51 |
model.eval() # Set dropouts to zero
|
52 |
-
|
|
|
|
|
53 |
# Decode to get output strings
|
54 |
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
55 |
-
print(decoded_output) #
|
56 |
-
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
61 |
-
print(decoded_output) # I am happy
|
62 |
-
inp = tokenizer("मैं [MASK] हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
63 |
-
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
64 |
-
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
65 |
-
print(decoded_output) # मैं जानता हूँ
|
66 |
-
inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
67 |
-
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
|
68 |
-
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
69 |
-
print(decoded_output) # मला ओळखलं पाहिजे
|
70 |
```
|
71 |
# Note:
|
72 |
If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script.
|
|
|
26 |
|
27 |
# MultiIndicQuestionGenerationUnified
|
28 |
|
29 |
+
MultiIndicQuestionGenerationUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details,
|
30 |
+
see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationUnified to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationUnified are:
|
31 |
+
|
32 |
+
<ul>
|
33 |
+
<li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
|
34 |
+
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for fine-tuning and decoding. </li>
|
35 |
+
<li> Fine-tuned on large Indic language corpora (770 K examples). </li>
|
36 |
+
<li> All languages have been represented in Devanagari script to encourage transfer learning among the related languages. </li>
|
37 |
+
</ul>
|
38 |
+
|
39 |
+
You can read more about MultiIndicQuestionGenerationUnified in this <a href="https://arxiv.org/abs/2203.05437">paper</a>.
|
40 |
|
41 |
|
42 |
## Using this model in `transformers`
|
|
|
44 |
```
|
45 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
46 |
from transformers import AlbertTokenizer, AutoTokenizer
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True)
|
49 |
+
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True)
|
50 |
+
|
51 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified")
|
52 |
+
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified")
|
53 |
+
|
54 |
# Some initial mapping
|
55 |
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
|
56 |
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
|
57 |
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
|
58 |
+
# To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
|
59 |
+
|
60 |
# First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
|
61 |
+
inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था।</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
62 |
+
|
63 |
+
out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
|
64 |
+
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
|
65 |
+
|
66 |
+
# For loss
|
67 |
+
model_outputs.loss ## This is not label smoothed.
|
68 |
+
|
69 |
+
# For logits
|
70 |
+
model_outputs.logits
|
71 |
|
72 |
# For generation. Pardon the messiness. Note the decoder_start_token_id.
|
73 |
model.eval() # Set dropouts to zero
|
74 |
+
|
75 |
+
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))
|
76 |
+
|
77 |
# Decode to get output strings
|
78 |
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
79 |
+
print(decoded_output) # कब खेला जाएगा पहला मैच?
|
80 |
+
|
81 |
+
# Disclaimer
|
82 |
+
Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py).
|
83 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
```
|
85 |
# Note:
|
86 |
If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script.
|