File size: 2,070 Bytes
49b7e2f
e2012ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b63693
e2012ed
 
 
49b7e2f
e2012ed
 
3cef3ff
 
e2012ed
 
 
 
 
 
49b7e2f
e2012ed
 
 
 
 
 
 
 
 
 
 
 
 
 
74a49d3
 
e2012ed
 
 
 
 
 
7d773d1
 
 
 
 
 
 
 
e2012ed
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- as
- bn
- brx
- doi
- en
- gom
- gu
- hi
- kn
- ks
- kas
- mai
- ml
- mr
- mni
- mnb
- ne
- or
- pa
- sa
- sat
- sd
- snd
- ta
- te
- ur
language_details: >-
  asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
  hin_Deva, kan_Knda, kas_Arab, kas_Deva, mai_Deva, mal_Mlym, mar_Deva,
  mni_Beng, mni_Mtei, npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck,
  snd_Arab, snd_Deva, tam_Taml, tel_Telu, urd_Arab
tags:
- indictrans2
- translation
- ai4bharat
- multilingual
license: mit
datasets:
- flores-200
- IN22-Gen
- IN22-Conv
metrics:
- bleu
- chrf
- chrf++
- comet
inference: false
---

# IndicTrans2

This is the model card of IndicTrans2 Indic-En 1.1B variant.

Here are the [metrics](https://drive.google.com/drive/folders/1lOOdaU0VdRSBgJEsNav5zC7wwLBis9NI?usp=sharing) for the particular checkpoint.

Please refer to `Appendix D: Model Card` of the [preprint](https://arxiv.org/abs/2305.16307) for further details on model training, intended use, data, metrics, limitations and recommendations.


### Usage Instructions

Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_inference) for a detail description on how to use HF compatible IndicTrans2 models for inference.

**Note: IndicTrans2 is not compatible with AutoTokenizer, therefore we provide [IndicTransTokenizer](https://github.com/VarunGumma/IndicTransTokenizer)**


### Citation

If you consider using our work then please cite using:

```
@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
note={}
}
```