File size: 4,260 Bytes
aaf798e
66ff4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf798e
66ff4e8
 
 
 
 
 
 
 
 
 
aaf798e
66ff4e8
 
 
 
 
d4b5698
66ff4e8
 
 
79e484a
66ff4e8
7645285
 
 
 
 
 
1d00893
7645285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e2c545
66ff4e8
 
 
 
 
 
8b13e34
 
 
 
 
 
 
 
66ff4e8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
language:
- as
- bn
- brx
- doi
- en
- gom
- gu
- hi
- kn
- ks
- kas
- mai
- ml
- mr
- mni
- mnb
- ne
- or
- pa
- sa
- sat
- sd
- snd
- ta
- te
- ur
language_details: >-
  asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
  hin_Deva, kan_Knda, kas_Arab, kas_Deva, mai_Deva, mal_Mlym, mar_Deva,
  mni_Beng, mni_Mtei, npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck,
  snd_Arab, snd_Deva, tam_Taml, tel_Telu, urd_Arab
tags:
- indictrans2
- translation
- ai4bharat
- multilingual
license: mit
datasets:
- flores-200
- IN22-Gen
- IN22-Conv
metrics:
- bleu
- chrf
- chrf++
- comet
inference: false
---

# IndicTrans2

This is the model card of IndicTrans2 Indic-En Distilled 200M variant.

Please refer to [section 7.6: Distilled Models](https://openreview.net/forum?id=vfT4YuzAYA) in the TMLR submission for further details on model training, data and metrics.

### Usage Instructions

Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_interface) for a detail description on how to use HF compatible IndicTrans2 models for inference.

```python
import torch
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
)
from IndicTransToolkit import IndicProcessor


model_name = "ai4bharat/indictrans2-indic-en-dist-200M"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)

ip = IndicProcessor(inference=True)

input_sentences = [
    "जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।",
    "हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।",
    "अगर तुम मुझे उस समय पास मिलते, तो हम बाहर खाना खाने चलते।",
    "मेरे मित्र ने मुझे उसके जन्मदिन की पार्टी में बुलाया है, और मैं उसे एक तोहफा दूंगा।",
]

src_lang, tgt_lang = "hin_Deva", "eng_Latn"

batch = ip.preprocess_batch(
    input_sentences,
    src_lang=src_lang,
    tgt_lang=tgt_lang,
)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Tokenize the sentences and generate input encodings
inputs = tokenizer(
    batch,
    truncation=True,
    padding="longest",
    return_tensors="pt",
    return_attention_mask=True,
).to(DEVICE)

# Generate translations using the model
with torch.no_grad():
    generated_tokens = model.generate(
        **inputs,
        use_cache=True,
        min_length=0,
        max_length=256,
        num_beams=5,
        num_return_sequences=1,
    )

# Decode the generated tokens into text
with tokenizer.as_target_tokenizer():
    generated_tokens = tokenizer.batch_decode(
        generated_tokens.detach().cpu().tolist(),
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )

# Postprocess the translations, including entity replacement
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)

for input_sentence, translation in zip(input_sentences, translations):
    print(f"{src_lang}: {input_sentence}")
    print(f"{tgt_lang}: {translation}")
```

**Note: IndicTrans2 is now compatible with AutoTokenizer, however you need to use IndicProcessor from [IndicTransTokenizer](https://github.com/VarunGumma/IndicTransTokenizer) for preprocessing before tokenization.**



### Citation

If you consider using our work then please cite using:

```
@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
note={}
}
```