ControllerExecutorFlowModule / ControllerAtomicFlow.py
nbaldwin's picture
remove is_reply
c4d9a5c
import json
from copy import deepcopy
from typing import Any, Dict, List
from flow_modules.aiflows.ChatFlowModule import ChatAtomicFlow
from aiflows.messages import FlowMessage
from dataclasses import dataclass
@dataclass
class Command:
""" The command class is used to store the information about the commands that the user can give to the controller.
:param name: The name of the command.
:type name: str
:param description: The description of the command.
:type description: str
:param input_args: The input arguments of the command.
:type input_args: List[str]
"""
name: str
description: str
input_args: List[str]
class ControllerAtomicFlow(ChatAtomicFlow):
""" The ControllerAtomicFlow is an atomic flow that, given an observation and a goal, can call a set of commands and arguments which are then usually executed by an ExecutorAtomicFlow (branching flow).
*Configuration Parameters*
- `name` (str): The name of the flow. Default: "ControllerFlow"
- `description` (str): A description of the flow. This description is used to generate the help message of the flow.
Default: "Proposes the next action to take towards achieving the goal, and prepares the input for the executor."
- `enable_cache` (bool): Whether to enable caching or not. Default: True
- `commands` (List[Dict[str,Any]]): A list of commands that the controller can call. Default: []
- `finish` (Dict[str,Any]): The configuration of the finish command. Default parameters: No default parameters.
- `system_message_prompt_template` (Dict[str, Any]): The prompt template used to generate the system message.
By default, it's type is aiflows.prompt_template.JinjaPrompt. It's default parameters are:
- `template` (str): The template of the prompt. Default: see ControllerAtomicFlow.yaml for the default template.
- `input_variables` (List[str]): The input variables of the prompt. Default: ["commands"]. Note that the commands are the commands of the executor
(subflows of branching flow) and are actually to the system prompt template via the `_build_commands_manual` function of this class.
- `human_message_prompt_template` (Dict[str, Any]): The prompt template of the human/user message (message used everytime the except the first time in).
It's passed as the user message to the LLM. By default its of type aiflows.prompt_template.JinjaPrompt and has the following parameters:
- `template` (str): The template of the prompt. Default: see ControllerAtomicFlow.yaml for the default template.
- `input_variables` (List[str]): The input variables of the prompt. Default: ["observation"]
- init_human_message_prompt_template` (Dict[str, Any]): The prompt template of the human/user message used to initialize the conversation
(first time in). It is used to generate the human message. It's passed as the user message to the LLM.
By default its of type aiflows.prompt_template.JinjaPrompt and has the following parameters:
- `template` (str): The template of the prompt. Default: see ControllerAtomicFlow.yaml for the default template.
- `input_variables` (List[str]): The input variables of the prompt. Default: ["goal"]
- All other parameters are inherited from the default configuration of ChatAtomicFlow (see Flowcard, i.e. README.md, of ChatAtomicFlowModule).
*Initial Input Interface (this is the interface used the first time the flow is called)*:
- `goal` (str): The goal of the controller. Usually asked by the user/human (e.g. "I want to know the occupation and birth date of Michael Jordan.")
*Input Interface (this is the interface used after the first time the flow is called)*:
- `observation` (str): The observation of the controller's previous action. Usually the response of the ExecutorAtomicFlow (e.g. "The result of a wikipedia search (if the ExecutorAtomicFlow has a WikipediaExecutorAtomicFlow).")
*Output Interface:*
- `thought` (str): The thought of the controller on what to do next (which command to call)
- `reasoning` (str): The reasoning of the controller on why it thinks the command it wants to call is the right one
- `criticism` (str): The criticism of the controller of it's thinking process
- `command` (str): The command to the executor chooses to call
- `command_args` (Dict[str, Any]): The arguments of the command to call
:param commands: The commands that the controller can call (typically the commands of the executor).
:type commands: List[Command]
:param \**kwargs: The parameters specific to the ChatAtomicFlow.
:type \**kwargs: Dict[str, Any]
"""
def __init__(self, commands: List[Command], **kwargs):
super().__init__(**kwargs)
self.system_message_prompt_template = self.system_message_prompt_template.partial(
commands=self._build_commands_manual(commands)
)
@staticmethod
def _build_commands_manual(commands: List[Command]) -> str:
""" This method writes the commands that the ControllerAtomicFlow in string to pass it to the system_message_prompt_template.
:param commands: The commands that the controller can call.
:type commands: List[Command]
:return: The string containing the commands.
:rtype: str
"""
ret = ""
for i, command in enumerate(commands):
command_input_json_schema = json.dumps(
{input_arg: f"YOUR_{input_arg.upper()}" for input_arg in command.input_args})
ret += f"{i + 1}. {command.name}: {command.description} Input arguments (given in the JSON schema): {command_input_json_schema}\n"
return ret
@classmethod
def instantiate_from_config(cls, config):
""" This method instantiates the flow from a configuration file.
:param config: The configuration of the flow.
:type config: Dict[str, Any]
:return: The instantiated flow.
:rtype: ControllerAtomicFlow
"""
flow_config = deepcopy(config)
kwargs = {"flow_config": flow_config}
# ~~~ Set up prompts ~~~
kwargs.update(cls._set_up_prompts(flow_config))
kwargs.update(cls._set_up_backend(flow_config))
# ~~~ Set up commands ~~~
commands = flow_config["commands"]
commands = [
Command(name, command_conf["description"], command_conf["input_args"]) for name, command_conf in
commands.items()
]
kwargs.update({"commands": commands})
# ~~~ Instantiate flow ~~~
return cls(**kwargs)
def run(self, input_message: FlowMessage):
""" This method runs the flow. Note that the response of the LLM is in the JSON format, but it's not a hard constraint (it can hallucinate and return an invalid JSON)
:param input_message: The input data of the flow.
:type input_message: FlowMessage
"""
input_data = input_message.data
if "goal" in input_data:
self.flow_state["goal"] = input_data["goal"]
else:
input_data["goal"] = self.flow_state["goal"]
api_output = self.query_llm(input_data)
response = json.loads(api_output)
reply = self.package_output_message(
input_message=input_message,
response=response
)
self.send_message(reply)