File size: 10,628 Bytes
79d70a4
b76220a
79d70a4
b76220a
 
 
58959aa
7cb823f
b76220a
 
 
 
 
58959aa
b76220a
 
 
 
 
 
 
 
 
58959aa
b76220a
 
 
 
 
 
 
 
79d70a4
b76220a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c718c
 
 
 
b76220a
 
 
 
 
 
 
52c718c
 
b76220a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c718c
 
b76220a
 
 
 
 
 
 
 
7cb823f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
language: en
license: mit
datasets:
- DocRED
tags:
- token-classification
- lsr
inference: false
model-index:
- name: LSR
  results:
  - task:
      type: token-classification
      name: LSR
    dataset:
      name: DocRED (on development set)
      type: DocRED
    metrics:
    - name: F1
      type: f1
      value: 0.55
  - task:
      type: token-classification
      name: LSR
    dataset:
      name: DocRED (reported by authors in paper on development set)
      type: DocRED
    metrics:
    - name: F1
      type: f1
      value: 0.55
---

# Relation Extraction
You can **test the model** at [SGNLP-Demo](https://sgnlp.aisingapore.net/relation-extraction).<br />
If you want to find out more information, please contact us at [email protected].

## Table of Contents
- [Model Details](#model-details)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Model Parameters](#parameters)
- [Other Information](#other-information)

## Model Details
**Model Name:** LSR
- **Description:** This is a neural network that induces a latent document-level graph and uses a refinement strategy that allows the model to incrementally aggregate relevant information for multi-hop reasoning. This particular model corresponds to the GloVe+LSR model described in the paper.
- **Paper:** Reasoning with Latent Structure Refinement for Document-Level Relation Extraction. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, July 2020 (pp. 1546-1557).
- **Author(s):** Nan, G., Guo, Z., Sekulić, I., & Lu, W. (2020).
- **URL:** https://aclanthology.org/2020.acl-main.141/

# How to Get Started With the Model

## Install Python package
SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than relation extraction are available in the python package. You can try them out at [SGNLP-Demo](https://sgnlp.aisingapore.net/) | [SGNLP-Github](https://github.com/aisingapore/sgnlp).

```python
pip install sgnlp

```

## Examples
For more full code (such as Relation-Extraction), please refer to this [github](https://github.com/aisingapore/sgnlp). <br> Alternatively, you can also try out the [SGNLP-Demo](https://sgnlp.aisingapore.net/relation-extraction) | [SGNLP-Docs](https://sgnlp.aisingapore.net/docs/api_reference/sgnlp.models.lsr.html) for Relation extraction using LSR model.

Example of Relation Extraction (using LSR model):
```python
from sgnlp.models.lsr import LsrModel, LsrConfig, LsrPreprocessor, LsrPostprocessor
from transformers import cached_path

# Download files from azure blob storage
rel2id_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/rel2id.json')
word2id_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/word2id.json')
ner2id_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/ner2id.json')
rel_info_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/rel_info.json')

PRED_THRESHOLD = 0.3
preprocessor = LsrPreprocessor(rel2id_path=rel2id_path, word2id_path=word2id_path, ner2id_path=ner2id_path)
postprocessor = LsrPostprocessor.from_file_paths(rel2id_path=rel2id_path, rel_info_path=rel_info_path,
                                                 pred_threshold=PRED_THRESHOLD)

# Load model
config = LsrConfig.from_pretrained('https://storage.googleapis.com/sgnlp-models/models/lsr/v2/config.json')
model = LsrModel.from_pretrained('https://storage.googleapis.com/sgnlp-models/models/lsr/v2/pytorch_model.bin', config=config)
model.eval()

# DocRED-like instance
instance = {
    "vertexSet": [[{"name": "Lark Force", "pos": [0, 2], "sent_id": 0, "type": "ORG"},
                   {"sent_id": 3, "type": "ORG", "pos": [2, 4], "name": "Lark Force"},
                   {"name": "Lark Force", "pos": [3, 5], "sent_id": 4, "type": "ORG"}],
                  [{"name": "Australian Army", "pos": [4, 6], "sent_id": 0, "type": "ORG"}],
                  [{"pos": [9, 11], "type": "TIME", "sent_id": 0, "name": "March 1941"}],
                  [{"name": "World War II", "pos": [12, 15], "sent_id": 0, "type": "MISC"}],
                  [{"name": "New Britain", "pos": [18, 20], "sent_id": 0, "type": "LOC"}],
                  [{"name": "New Ireland", "pos": [21, 23], "sent_id": 0, "type": "LOC"}],
                  [{"name": "John Scanlan", "pos": [6, 8], "sent_id": 1, "type": "PER"}],
                  [{"name": "Australia", "pos": [13, 14], "sent_id": 1, "type": "LOC"}],
                  [{"name": "Rabaul", "pos": [17, 18], "sent_id": 1, "type": "LOC"},
                   {"name": "Rabaul", "pos": [12, 13], "sent_id": 3, "type": "LOC"}],
                  [{"name": "Kavieng", "pos": [19, 20], "sent_id": 1, "type": "LOC"},
                   {"name": "Kavieng", "pos": [14, 15], "sent_id": 3, "type": "LOC"}],
                  [{"pos": [22, 24], "type": "MISC", "sent_id": 1, "name": "SS Katoomba"}],
                  [{"pos": [25, 27], "type": "MISC", "sent_id": 1, "name": "MV Neptuna"}],
                  [{"name": "HMAT Zealandia", "pos": [28, 30], "sent_id": 1, "type": "MISC"}],
                  [{"name": "Imperial Japanese Army", "pos": [8, 11], "sent_id": 3, "type": "ORG"}],
                  [{"pos": [18, 20], "type": "TIME", "sent_id": 3, "name": "January 1942"}],
                  [{"name": "Japan", "pos": [8, 9], "sent_id": 4, "type": "LOC"}],
                  [{"pos": [12, 13], "type": "MISC", "sent_id": 4, "name": "NCOs"}],
                  [{"name": "USS Sturgeon", "pos": [20, 22], "sent_id": 4, "type": "MISC"}],
                  [{"sent_id": 4, "type": "MISC", "pos": [27, 29], "name": "Montevideo Maru"}],
                  [{"name": "Japanese", "pos": [5, 6], "sent_id": 5, "type": "LOC"}],
                  [{"pos": [15, 16], "type": "NUM", "sent_id": 5, "name": "1,050"}],
                  [{"pos": [17, 18], "type": "NUM", "sent_id": 5, "name": "1,053"}]],
    "labels": [
        {"r": "P607", "h": 1, "t": 3, "evidence": [0]},
        {"r": "P17", "h": 1, "t": 7, "evidence": [0, 1]},
        {"r": "P241", "h": 6, "t": 1, "evidence": [0, 1]},
        {"r": "P607", "h": 6, "t": 3, "evidence": [0, 1]},
        {"r": "P27", "h": 6, "t": 7, "evidence": [0, 1]},
        {"r": "P1344", "h": 7, "t": 3, "evidence": [0, 1]},
        {"r": "P607", "h": 13, "t": 3, "evidence": [0, 3]},
        {"r": "P17", "h": 13, "t": 15, "evidence": [3, 4, 5]},
        {"r": "P17", "h": 13, "t": 19, "evidence": [3, 4, 5]},
        {"r": "P1344", "h": 15, "t": 3, "evidence": [0, 3, 4, 5]},
        {"r": "P172", "h": 15, "t": 19, "evidence": [4, 5]},
        {"r": "P607", "h": 17, "t": 3, "evidence": [0, 4]},
        {"r": "P17", "h": 11, "t": 7, "evidence": [1]},
        {"r": "P17", "h": 12, "t": 7, "evidence": [0, 1]},
        {"r": "P137", "h": 0, "t": 1, "evidence": [0, 1]},
        {"r": "P571", "h": 0, "t": 2, "evidence": [0]},
        {"r": "P607", "h": 0, "t": 3, "evidence": [0]},
        {"r": "P17", "h": 0, "t": 7, "evidence": [0, 1]}],
    "title": "Lark Force",
    "sents": [
        ["Lark", "Force", "was", "an", "Australian", "Army", "formation", "established", "in", "March", "1941",
         "during", "World", "War", "II", "for", "service", "in", "New", "Britain", "and", "New", "Ireland", "."],
        ["Under", "the", "command", "of", "Lieutenant", "Colonel", "John", "Scanlan", ",", "it", "was", "raised", "in",
         "Australia", "and", "deployed", "to", "Rabaul", "and", "Kavieng", ",", "aboard", "SS", "Katoomba", ",", "MV",
         "Neptuna", "and", "HMAT", "Zealandia", ",", "to", "defend", "their", "strategically", "important", "harbours",
         "and", "airfields", "."],
        ["The", "objective", "of", "the", "force", ",", "was", "to", "maintain", "a", "forward", "air", "observation",
         "line", "as", "long", "as", "possible", "and", "to", "make", "the", "enemy", "fight", "for", "this", "line",
         "rather", "than", "abandon", "it", "at", "the", "first", "threat", "as", "the", "force", "was", "considered",
         "too", "small", "to", "withstand", "any", "invasion", "."],
        ["Most", "of", "Lark", "Force", "was", "captured", "by", "the", "Imperial", "Japanese", "Army", "after",
         "Rabaul", "and", "Kavieng", "were", "captured", "in", "January", "1942", "."],
        ["The", "officers", "of", "Lark", "Force", "were", "transported", "to", "Japan", ",", "however", "the", "NCOs",
         "and", "men", "were", "unfortunately", "torpedoed", "by", "the", "USS", "Sturgeon", "while", "being",
         "transported", "aboard", "the", "Montevideo", "Maru", "."],
        ["Only", "a", "handful", "of", "the", "Japanese", "crew", "were", "rescued", ",", "with", "none", "of", "the",
         "between", "1,050", "and", "1,053", "prisoners", "aboard", "surviving", "as", "they", "were", "still",
         "locked", "below", "deck", "."]
    ]
}

tensor_doc = preprocessor([instance])
output = model(**tensor_doc)

result = postprocessor(output.prediction, [instance])



```


# Training
The training datasets can be retrieved from Permuted dataset derived from Linguistic Data Consortium's (LDC) Wall Street Journal (WSJ) dataset. 
Please contact the authors to get the dataset if you have a valid LDC license.

#### Training Results
- **Training Time:** ~17 hours for 100 epochs on a single V100 GPU.
- **Datasets:** Retrieved from [DocRED](https://github.com/thunlp/DocRED/tree/master/data)
- **Training Config:** Not available.

# Model Parameters
- **Model Weights:** [link](https://storage.googleapis.com/sgnlp-models/models/lsr/pytorch_model.bin)
- **Model Config:** [link](https://storage.googleapis.com/sgnlp-models/models/lsr/config.json)
- **Model Inputs:** Coreference clusters of entities, relations between clusters of entities, and text.
- **Model Outputs:** Scores of all possible relation labels between all possible pairs of entity clusters.
- **Model Size:** ~85MB
- **Model Inference Info:**  Not available.
- **Usage Scenarios:** Knowledge graph building.

# Other Information
- **Original Code:** [link](https://github.com/nanguoshun/LSR)
- **Additional Information**: CAVEATS: The model trained in this paper alone is not sufficient to do extract relations from a document. It requires other models to perform entity recognition and coreference between the entities. For this demo, two other pretrained models from AllenNLP is used: Fine Grained Name Entity Recognition and Coreference SpanBERT.