File size: 10,628 Bytes
79d70a4 b76220a 79d70a4 b76220a 58959aa 7cb823f b76220a 58959aa b76220a 58959aa b76220a 79d70a4 b76220a 52c718c b76220a 52c718c b76220a 52c718c b76220a 7cb823f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
language: en
license: mit
datasets:
- DocRED
tags:
- token-classification
- lsr
inference: false
model-index:
- name: LSR
results:
- task:
type: token-classification
name: LSR
dataset:
name: DocRED (on development set)
type: DocRED
metrics:
- name: F1
type: f1
value: 0.55
- task:
type: token-classification
name: LSR
dataset:
name: DocRED (reported by authors in paper on development set)
type: DocRED
metrics:
- name: F1
type: f1
value: 0.55
---
# Relation Extraction
You can **test the model** at [SGNLP-Demo](https://sgnlp.aisingapore.net/relation-extraction).<br />
If you want to find out more information, please contact us at [email protected].
## Table of Contents
- [Model Details](#model-details)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Model Parameters](#parameters)
- [Other Information](#other-information)
## Model Details
**Model Name:** LSR
- **Description:** This is a neural network that induces a latent document-level graph and uses a refinement strategy that allows the model to incrementally aggregate relevant information for multi-hop reasoning. This particular model corresponds to the GloVe+LSR model described in the paper.
- **Paper:** Reasoning with Latent Structure Refinement for Document-Level Relation Extraction. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, July 2020 (pp. 1546-1557).
- **Author(s):** Nan, G., Guo, Z., Sekulić, I., & Lu, W. (2020).
- **URL:** https://aclanthology.org/2020.acl-main.141/
# How to Get Started With the Model
## Install Python package
SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than relation extraction are available in the python package. You can try them out at [SGNLP-Demo](https://sgnlp.aisingapore.net/) | [SGNLP-Github](https://github.com/aisingapore/sgnlp).
```python
pip install sgnlp
```
## Examples
For more full code (such as Relation-Extraction), please refer to this [github](https://github.com/aisingapore/sgnlp). <br> Alternatively, you can also try out the [SGNLP-Demo](https://sgnlp.aisingapore.net/relation-extraction) | [SGNLP-Docs](https://sgnlp.aisingapore.net/docs/api_reference/sgnlp.models.lsr.html) for Relation extraction using LSR model.
Example of Relation Extraction (using LSR model):
```python
from sgnlp.models.lsr import LsrModel, LsrConfig, LsrPreprocessor, LsrPostprocessor
from transformers import cached_path
# Download files from azure blob storage
rel2id_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/rel2id.json')
word2id_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/word2id.json')
ner2id_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/ner2id.json')
rel_info_path = cached_path('https://storage.googleapis.com/sgnlp-models/models/lsr/rel_info.json')
PRED_THRESHOLD = 0.3
preprocessor = LsrPreprocessor(rel2id_path=rel2id_path, word2id_path=word2id_path, ner2id_path=ner2id_path)
postprocessor = LsrPostprocessor.from_file_paths(rel2id_path=rel2id_path, rel_info_path=rel_info_path,
pred_threshold=PRED_THRESHOLD)
# Load model
config = LsrConfig.from_pretrained('https://storage.googleapis.com/sgnlp-models/models/lsr/v2/config.json')
model = LsrModel.from_pretrained('https://storage.googleapis.com/sgnlp-models/models/lsr/v2/pytorch_model.bin', config=config)
model.eval()
# DocRED-like instance
instance = {
"vertexSet": [[{"name": "Lark Force", "pos": [0, 2], "sent_id": 0, "type": "ORG"},
{"sent_id": 3, "type": "ORG", "pos": [2, 4], "name": "Lark Force"},
{"name": "Lark Force", "pos": [3, 5], "sent_id": 4, "type": "ORG"}],
[{"name": "Australian Army", "pos": [4, 6], "sent_id": 0, "type": "ORG"}],
[{"pos": [9, 11], "type": "TIME", "sent_id": 0, "name": "March 1941"}],
[{"name": "World War II", "pos": [12, 15], "sent_id": 0, "type": "MISC"}],
[{"name": "New Britain", "pos": [18, 20], "sent_id": 0, "type": "LOC"}],
[{"name": "New Ireland", "pos": [21, 23], "sent_id": 0, "type": "LOC"}],
[{"name": "John Scanlan", "pos": [6, 8], "sent_id": 1, "type": "PER"}],
[{"name": "Australia", "pos": [13, 14], "sent_id": 1, "type": "LOC"}],
[{"name": "Rabaul", "pos": [17, 18], "sent_id": 1, "type": "LOC"},
{"name": "Rabaul", "pos": [12, 13], "sent_id": 3, "type": "LOC"}],
[{"name": "Kavieng", "pos": [19, 20], "sent_id": 1, "type": "LOC"},
{"name": "Kavieng", "pos": [14, 15], "sent_id": 3, "type": "LOC"}],
[{"pos": [22, 24], "type": "MISC", "sent_id": 1, "name": "SS Katoomba"}],
[{"pos": [25, 27], "type": "MISC", "sent_id": 1, "name": "MV Neptuna"}],
[{"name": "HMAT Zealandia", "pos": [28, 30], "sent_id": 1, "type": "MISC"}],
[{"name": "Imperial Japanese Army", "pos": [8, 11], "sent_id": 3, "type": "ORG"}],
[{"pos": [18, 20], "type": "TIME", "sent_id": 3, "name": "January 1942"}],
[{"name": "Japan", "pos": [8, 9], "sent_id": 4, "type": "LOC"}],
[{"pos": [12, 13], "type": "MISC", "sent_id": 4, "name": "NCOs"}],
[{"name": "USS Sturgeon", "pos": [20, 22], "sent_id": 4, "type": "MISC"}],
[{"sent_id": 4, "type": "MISC", "pos": [27, 29], "name": "Montevideo Maru"}],
[{"name": "Japanese", "pos": [5, 6], "sent_id": 5, "type": "LOC"}],
[{"pos": [15, 16], "type": "NUM", "sent_id": 5, "name": "1,050"}],
[{"pos": [17, 18], "type": "NUM", "sent_id": 5, "name": "1,053"}]],
"labels": [
{"r": "P607", "h": 1, "t": 3, "evidence": [0]},
{"r": "P17", "h": 1, "t": 7, "evidence": [0, 1]},
{"r": "P241", "h": 6, "t": 1, "evidence": [0, 1]},
{"r": "P607", "h": 6, "t": 3, "evidence": [0, 1]},
{"r": "P27", "h": 6, "t": 7, "evidence": [0, 1]},
{"r": "P1344", "h": 7, "t": 3, "evidence": [0, 1]},
{"r": "P607", "h": 13, "t": 3, "evidence": [0, 3]},
{"r": "P17", "h": 13, "t": 15, "evidence": [3, 4, 5]},
{"r": "P17", "h": 13, "t": 19, "evidence": [3, 4, 5]},
{"r": "P1344", "h": 15, "t": 3, "evidence": [0, 3, 4, 5]},
{"r": "P172", "h": 15, "t": 19, "evidence": [4, 5]},
{"r": "P607", "h": 17, "t": 3, "evidence": [0, 4]},
{"r": "P17", "h": 11, "t": 7, "evidence": [1]},
{"r": "P17", "h": 12, "t": 7, "evidence": [0, 1]},
{"r": "P137", "h": 0, "t": 1, "evidence": [0, 1]},
{"r": "P571", "h": 0, "t": 2, "evidence": [0]},
{"r": "P607", "h": 0, "t": 3, "evidence": [0]},
{"r": "P17", "h": 0, "t": 7, "evidence": [0, 1]}],
"title": "Lark Force",
"sents": [
["Lark", "Force", "was", "an", "Australian", "Army", "formation", "established", "in", "March", "1941",
"during", "World", "War", "II", "for", "service", "in", "New", "Britain", "and", "New", "Ireland", "."],
["Under", "the", "command", "of", "Lieutenant", "Colonel", "John", "Scanlan", ",", "it", "was", "raised", "in",
"Australia", "and", "deployed", "to", "Rabaul", "and", "Kavieng", ",", "aboard", "SS", "Katoomba", ",", "MV",
"Neptuna", "and", "HMAT", "Zealandia", ",", "to", "defend", "their", "strategically", "important", "harbours",
"and", "airfields", "."],
["The", "objective", "of", "the", "force", ",", "was", "to", "maintain", "a", "forward", "air", "observation",
"line", "as", "long", "as", "possible", "and", "to", "make", "the", "enemy", "fight", "for", "this", "line",
"rather", "than", "abandon", "it", "at", "the", "first", "threat", "as", "the", "force", "was", "considered",
"too", "small", "to", "withstand", "any", "invasion", "."],
["Most", "of", "Lark", "Force", "was", "captured", "by", "the", "Imperial", "Japanese", "Army", "after",
"Rabaul", "and", "Kavieng", "were", "captured", "in", "January", "1942", "."],
["The", "officers", "of", "Lark", "Force", "were", "transported", "to", "Japan", ",", "however", "the", "NCOs",
"and", "men", "were", "unfortunately", "torpedoed", "by", "the", "USS", "Sturgeon", "while", "being",
"transported", "aboard", "the", "Montevideo", "Maru", "."],
["Only", "a", "handful", "of", "the", "Japanese", "crew", "were", "rescued", ",", "with", "none", "of", "the",
"between", "1,050", "and", "1,053", "prisoners", "aboard", "surviving", "as", "they", "were", "still",
"locked", "below", "deck", "."]
]
}
tensor_doc = preprocessor([instance])
output = model(**tensor_doc)
result = postprocessor(output.prediction, [instance])
```
# Training
The training datasets can be retrieved from Permuted dataset derived from Linguistic Data Consortium's (LDC) Wall Street Journal (WSJ) dataset.
Please contact the authors to get the dataset if you have a valid LDC license.
#### Training Results
- **Training Time:** ~17 hours for 100 epochs on a single V100 GPU.
- **Datasets:** Retrieved from [DocRED](https://github.com/thunlp/DocRED/tree/master/data)
- **Training Config:** Not available.
# Model Parameters
- **Model Weights:** [link](https://storage.googleapis.com/sgnlp-models/models/lsr/pytorch_model.bin)
- **Model Config:** [link](https://storage.googleapis.com/sgnlp-models/models/lsr/config.json)
- **Model Inputs:** Coreference clusters of entities, relations between clusters of entities, and text.
- **Model Outputs:** Scores of all possible relation labels between all possible pairs of entity clusters.
- **Model Size:** ~85MB
- **Model Inference Info:** Not available.
- **Usage Scenarios:** Knowledge graph building.
# Other Information
- **Original Code:** [link](https://github.com/nanguoshun/LSR)
- **Additional Information**: CAVEATS: The model trained in this paper alone is not sufficient to do extract relations from a document. It requires other models to perform entity recognition and coreference between the entities. For this demo, two other pretrained models from AllenNLP is used: Fine Grained Name Entity Recognition and Coreference SpanBERT. |