holylovenia's picture
Add model
3f96a16
raw
history blame
3.58 kB
"""GPT Blocks used for the GPT Model."""
from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
from .attention import ATTN_CLASS_REGISTRY
from .ffn import FFN_CLASS_REGISTRY, build_ffn
from .norm import NORM_CLASS_REGISTRY
class MPTBlock(nn.Module):
def __init__(
self,
d_model: int,
n_heads: int,
expansion_ratio: int,
attn_config: Optional[Dict] = None,
ffn_config: Optional[Dict] = None,
resid_pdrop: float = 0.0,
norm_type: str = "low_precision_layernorm",
fc_type: str = "torch",
device: Optional[str] = None,
no_bias: bool = False,
**kwargs: Any
):
if attn_config is None:
attn_config = {
"attn_type": "multihead_attention",
"attn_pdrop": 0.0,
"attn_impl": "triton",
"qk_ln": False,
"clip_qkv": None,
"softmax_scale": None,
"prefix_lm": False,
"attn_uses_sequence_id": False,
"alibi": False,
"alibi_bias_max": 8,
}
if ffn_config is None:
ffn_config = {"ffn_type": "mptmlp"}
del kwargs
super().__init__()
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
assert isinstance(attn_config["attn_type"], str)
attn_class = ATTN_CLASS_REGISTRY[attn_config["attn_type"]]
args_to_exclude_in_attn_class = {
"attn_type",
"prefix_lm",
"alibi",
"attn_uses_sequence_id",
"alibi_bias_max",
}
attn_config_subset_for_attn_class = {
k: v
for (k, v) in attn_config.items()
if k not in args_to_exclude_in_attn_class
}
self.norm_1 = norm_class(d_model, device=device)
self.attn = attn_class(
d_model=d_model,
n_heads=n_heads,
fc_type=fc_type,
device=device,
**attn_config_subset_for_attn_class,
bias=not no_bias
)
self.norm_2 = None
if not getattr(FFN_CLASS_REGISTRY[ffn_config["ffn_type"]], "_has_norm", False):
self.norm_2 = norm_class(d_model, device=device)
self.ffn = build_ffn(
d_model=d_model,
expansion_ratio=expansion_ratio,
device=device,
bias=not no_bias,
**ffn_config
)
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
def forward(
self,
x: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attn_bias: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.ByteTensor] = None,
is_causal: bool = True,
output_attentions: bool = False,
) -> Tuple[
torch.Tensor,
Optional[torch.Tensor],
Optional[Tuple[torch.Tensor, torch.Tensor]],
]:
a = self.norm_1(x)
(b, attn_weights, past_key_value) = self.attn(
a,
past_key_value=past_key_value,
attn_bias=attn_bias,
attention_mask=attention_mask,
is_causal=is_causal,
needs_weights=output_attentions,
)
x = x + self.resid_attn_dropout(b)
m = x
if self.norm_2 is not None:
m = self.norm_2(x)
n = self.ffn(m)
x = x + self.resid_ffn_dropout(n)
return (x, attn_weights, past_key_value)