--- license: apache-2.0 tags: - classification - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy model-index: - name: rotten_tomatoes_dataset results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8630393996247655 --- # rotten_tomatoes_dataset This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.7857 - Accuracy: 0.8630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3923 | 1.0 | 1067 | 0.3781 | 0.8480 | | 0.2186 | 2.0 | 2134 | 0.5862 | 0.8518 | | 0.0747 | 3.0 | 3201 | 0.7857 | 0.8630 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2