File size: 4,745 Bytes
1165c99 506f4a2 86fdf73 506f4a2 86fdf73 1165c99 506f4a2 30b4c56 81316a4 2edcad6 506f4a2 cf9a561 506f4a2 3966fb0 506f4a2 3966fb0 506f4a2 3966fb0 506f4a2 86fdf73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
language:
- en
license: cc-by-nc-nd-4.0
tags:
- code
datasets:
- ajibawa-2023/Python-Code-23k-ShareGPT
model-index:
- name: Python-Code-33B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 56.31
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Python-Code-33B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Python-Code-33B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Python-Code-33B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.39
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Python-Code-33B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Python-Code-33B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.18
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Python-Code-33B
name: Open LLM Leaderboard
---
**Python-Code-33B**
Large Language Models (LLMs) are good with code generations. Sometimes LLMs do make mistakes in code generation. How about if they can give detailed explanation along with the code.
This is what I have tried over here. The base Llama-2 model was used for training purpose. It is trained on around 23000+ set of codes. Each set having 2 conversations.
This data was generated using GPT-3.5, GPT-4 etc. This conversation is in Vicuna/ShareGPT format. Each set, along with code, has detailed explanation.
I have released the [data](https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT).
**Training:**
Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took 42 hours. DeepSpeed codebase was used for training purpose. This was trained on Llama-1 by Meta.
This is a full fine tuned model. Links for quantized models are given below.
**GPTQ GGML & AWQ**
GPTQ: [Link](https://huggingface.co/TheBloke/Python-Code-33B-GPTQ)
GGUF: [Link](https://huggingface.co/TheBloke/Python-Code-33B-GGUF)
AWQ: [Link](https://huggingface.co/TheBloke/Python-Code-33B-AWQ)
**Example Prompt:**
```
This is a conversation with your helpful AI assistant. AI assistant can generate Python Code along with necessary explanation.
Context
You are a helpful AI assistant.
USER: <prompt>
ASSISTANT:
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Python-Code-33B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |55.06|
|AI2 Reasoning Challenge (25-Shot)|56.31|
|HellaSwag (10-Shot) |81.01|
|MMLU (5-Shot) |54.22|
|TruthfulQA (0-shot) |44.39|
|Winogrande (5-shot) |75.22|
|GSM8k (5-shot) |19.18|
|