--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: Self-consciousness_continuous results: [] --- # Self-consciousness_continuous This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0411 - Rmse: 0.2028 - Mae: 0.1628 - Corr: 0.3046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mae | Corr | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 268 | 0.0422 | 0.2055 | 0.1657 | 0.2674 | | 0.0486 | 2.0 | 536 | 0.0409 | 0.2023 | 0.1637 | 0.2972 | | 0.0486 | 3.0 | 804 | 0.0411 | 0.2028 | 0.1628 | 0.3046 | ### Framework versions - Transformers 4.44.1 - Pytorch 1.11.0 - Datasets 2.12.0 - Tokenizers 0.19.1