NeRUBioS_RoBERTa_base_bne_Training_Testing
This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-bne on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3389
- Negref Precision: 0.5225
- Negref Recall: 0.5800
- Negref F1: 0.5498
- Neg Precision: 0.9521
- Neg Recall: 0.9642
- Neg F1: 0.9581
- Nsco Precision: 0.8732
- Nsco Recall: 0.9062
- Nsco F1: 0.8894
- Unc Precision: 0.8115
- Unc Recall: 0.8718
- Unc F1: 0.8405
- Usco Precision: 0.6862
- Usco Recall: 0.7532
- Usco F1: 0.7181
- Precision: 0.8150
- Recall: 0.8557
- F1: 0.8348
- Accuracy: 0.9505
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Negref Precision | Negref Recall | Negref F1 | Neg Precision | Neg Recall | Neg F1 | Nsco Precision | Nsco Recall | Nsco F1 | Unc Precision | Unc Recall | Unc F1 | Usco Precision | Usco Recall | Usco F1 | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1896 | 1.0 | 1729 | 0.1858 | 0.4255 | 0.4655 | 0.4446 | 0.9389 | 0.9501 | 0.9445 | 0.8327 | 0.8775 | 0.8545 | 0.7571 | 0.8231 | 0.7887 | 0.5996 | 0.6967 | 0.6445 | 0.7681 | 0.8136 | 0.7902 | 0.9407 |
0.1143 | 2.0 | 3458 | 0.1772 | 0.4907 | 0.5419 | 0.5150 | 0.9402 | 0.9600 | 0.9500 | 0.8400 | 0.8933 | 0.8658 | 0.7818 | 0.8359 | 0.8079 | 0.6035 | 0.7121 | 0.6533 | 0.7843 | 0.8369 | 0.8098 | 0.9441 |
0.0654 | 3.0 | 5187 | 0.1992 | 0.5314 | 0.4963 | 0.5133 | 0.9513 | 0.9600 | 0.9556 | 0.8648 | 0.8949 | 0.8796 | 0.7916 | 0.8667 | 0.8274 | 0.6033 | 0.7429 | 0.6659 | 0.8086 | 0.8357 | 0.8219 | 0.9459 |
0.0407 | 4.0 | 6916 | 0.2400 | 0.5270 | 0.5448 | 0.5357 | 0.9513 | 0.9607 | 0.9560 | 0.8554 | 0.8858 | 0.8703 | 0.8029 | 0.8462 | 0.8240 | 0.6635 | 0.7147 | 0.6881 | 0.8104 | 0.8364 | 0.8232 | 0.9456 |
0.0208 | 5.0 | 8645 | 0.2612 | 0.5132 | 0.5698 | 0.5400 | 0.9586 | 0.9600 | 0.9593 | 0.8726 | 0.8964 | 0.8843 | 0.8079 | 0.8410 | 0.8241 | 0.6571 | 0.7095 | 0.6823 | 0.8117 | 0.8426 | 0.8269 | 0.9472 |
0.0158 | 6.0 | 10374 | 0.2784 | 0.5019 | 0.5786 | 0.5375 | 0.9520 | 0.9614 | 0.9567 | 0.8669 | 0.9017 | 0.8839 | 0.8177 | 0.8282 | 0.8229 | 0.6490 | 0.7224 | 0.6837 | 0.8041 | 0.8462 | 0.8246 | 0.9485 |
0.0098 | 7.0 | 12103 | 0.3086 | 0.5159 | 0.5727 | 0.5428 | 0.9585 | 0.9572 | 0.9578 | 0.8743 | 0.8888 | 0.8815 | 0.8216 | 0.8385 | 0.8299 | 0.6855 | 0.7172 | 0.7010 | 0.8167 | 0.8402 | 0.8283 | 0.9489 |
0.0038 | 8.0 | 13832 | 0.3087 | 0.5189 | 0.5433 | 0.5308 | 0.9560 | 0.9614 | 0.9587 | 0.8810 | 0.8956 | 0.8882 | 0.8066 | 0.8769 | 0.8403 | 0.6808 | 0.7455 | 0.7117 | 0.8193 | 0.8452 | 0.8321 | 0.9482 |
0.0035 | 9.0 | 15561 | 0.3158 | 0.5147 | 0.5668 | 0.5395 | 0.9573 | 0.9614 | 0.9594 | 0.8820 | 0.8933 | 0.8876 | 0.8063 | 0.8538 | 0.8294 | 0.6573 | 0.7198 | 0.6871 | 0.8144 | 0.8438 | 0.8288 | 0.9501 |
0.0016 | 10.0 | 17290 | 0.3380 | 0.5171 | 0.5536 | 0.5348 | 0.9502 | 0.9656 | 0.9579 | 0.8635 | 0.9047 | 0.8836 | 0.8134 | 0.8718 | 0.8416 | 0.6690 | 0.7481 | 0.7063 | 0.8108 | 0.8509 | 0.8304 | 0.9491 |
0.0004 | 11.0 | 19019 | 0.3369 | 0.5164 | 0.5786 | 0.5457 | 0.9555 | 0.9649 | 0.9602 | 0.8759 | 0.9024 | 0.8890 | 0.8106 | 0.8667 | 0.8377 | 0.6822 | 0.7506 | 0.7148 | 0.8147 | 0.8538 | 0.8338 | 0.9502 |
0.0009 | 12.0 | 20748 | 0.3389 | 0.5225 | 0.5800 | 0.5498 | 0.9521 | 0.9642 | 0.9581 | 0.8732 | 0.9062 | 0.8894 | 0.8115 | 0.8718 | 0.8405 | 0.6862 | 0.7532 | 0.7181 | 0.8150 | 0.8557 | 0.8348 | 0.9505 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ajtamayoh/NeRUBioS_RoBERTa_base_bne_Training_Testing
Base model
PlanTL-GOB-ES/roberta-base-bne