@echo off rem ### frog train benchmark ### rem bypass Install CUDA Toolkit rem SET PATH=%PATH%;C:\SD\stable-diffusion-webui\venv\Lib\site-packages\torch\lib rem Path to rem SET PYTHON=C:\SD\Python310\Python.exe rem SET GIT=C:\SD\PortableGit\bin\git.exe SET PYTHON=python SET GIT=git rem VERS rem 1. torch==1.12.1+cu116 xformers-0.0.14.dev0 rem 2. torch==1.13.1+cu117 xformers-0.0.16rc425 SET VERS=1 rem MODE rem 1. install+train+inference rem 2. train+inference rem 3. inference SET MODE=1 rem BATCH_SIZE=2 IF VRAM < 10GB SET BATCH_SIZE=4 rem ############################# if %MODE% == 1 ( rem latest sd-scripts %GIT% clone https://github.com/kohya-ss/sd-scripts.git ) cd sd-scripts if %MODE% == 1 ( rem frog and SDv1.5 %GIT% clone https://huggingface.co/aka7774/frog_bench.git %PYTHON% -m venv venv ) rem venv activate SET PYTHON=%cd%\venv\Scripts\Python.exe SET PIP=%cd%\venv\Scripts\pip.exe SET ACCELERATE=%cd%\venv\Scripts\accelerate.exe if %MODE% == 1 ( if %VERS% == 1 ( "%PYTHON%" -m pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116 "%PYTHON%" -m pip install --upgrade -r requirements.txt "%PYTHON%" -m pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl ) if %VERS% == 2 ( "%PYTHON%" -m pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117 "%PYTHON%" -m pip install --upgrade -r requirements.txt "%PYTHON%" -m pip install -U -I --no-deps xformers==0.0.16rc425 ) copy /y .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\ copy /y .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py copy /y .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py ) if %MODE% leq 2 ( call :GetStartTime %ACCELERATE% launch ^ --num_cpu_threads_per_process 4 ^ --num_processes 1 ^ --num_machines 1 ^ --dynamo_backend no ^ --mixed_precision fp16 ^ train_network.py ^ --pretrained_model_name_or_path=frog_bench/model/v1-5-pruned-pruned-fp16.safetensors ^ --train_data_dir=frog_bench/train ^ --reg_data_dir=frog_bench/reg ^ --prior_loss_weight=1.0 ^ --resolution 512 ^ --output_dir=lora_output ^ --output_name=cjgg_frog ^ --train_batch_size=%BATCH_SIZE% ^ --learning_rate=1e-4 ^ --max_train_epochs 4 ^ --use_8bit_adam ^ --xformers ^ --mixed_precision=fp16 ^ --save_precision=fp16 ^ --seed 42 ^ --save_model_as=safetensors ^ --max_data_loader_n_workers=1 ^ --network_module=networks.lora ^ --network_dim=4 ^ --training_comment="activate by usu frog" call :GetEndTime ) %PYTHON% gen_img_diffusers.py ^ --ckpt frog_bench/model/v1-5-pruned-pruned-fp16.safetensors ^ --n_iter 1 ^ --scale 7.5 ^ --steps 40 ^ --outdir txt2img ^ --xformers ^ --W 512 ^ --H 512 ^ --fp16 ^ --sampler k_euler_a ^ --network_module networks.lora ^ --network_weights lora_output\cjgg_frog.safetensors ^ --network_mul 1.0 ^ --max_embeddings_multiples 3 ^ --clip_skip 1 ^ --batch_size 1 ^ --images_per_prompt 1 ^ --prompt "usu frog" if %MODE% leq 2 ( call :PutTime ) pause >nul goto EOL :GetStartTime set T=%TIME: =0% set H=%T:~0,2% set M=%T:~3,2% set S=%T:~6,2% set C=%T:~9,2% set /a H=1%H%-100,M=1%M%-100,S=1%S%-100,C=1%C%-100 exit /b 0 :GetEndTime set T1=%TIME: =0% set H1=%T1:~0,2% set M1=%T1:~3,2% set S1=%T1:~6,2% set C1=%T1:~9,2% set /a H1=1%H1%-100,M1=1%M1%-100,S1=1%S1%-100,C1=1%C1%-100 set /a H2=H1-H,M2=M1-M if %M2% LSS 0 set /a H2=H2-1,M2=M2+60 set /a S2=S1-S if %S2% LSS 0 set /a M2=M2-1,S2=S2+60 set /a C2=C1-C if %C2% LSS 0 set /a S2=S2-1,C2=C2+100 if %C2% LSS 10 set C2=0%C2% exit /b 0 :PutTime rem echo %T% rem echo %T1% echo %H2%h%M2%m%S2%.%C2%s echo %H2%h%M2%m%S2%.%C2%s>result.txt exit /b 0 :EOL