akahana commited on
Commit
fea2522
1 Parent(s): 5bb20f4

Model save

Browse files
Files changed (1) hide show
  1. README.md +3 -21
README.md CHANGED
@@ -1,24 +1,9 @@
1
  ---
2
  tags:
3
  - generated_from_trainer
4
- datasets:
5
- - akahana/GlotCC-V1-jav-Latn
6
- metrics:
7
- - accuracy
8
  model-index:
9
  - name: mini-roberta-javanese
10
- results:
11
- - task:
12
- name: Masked Language Modeling
13
- type: fill-mask
14
- dataset:
15
- name: akahana/GlotCC-V1-jav-Latn default
16
- type: akahana/GlotCC-V1-jav-Latn
17
- args: default
18
- metrics:
19
- - name: Accuracy
20
- type: accuracy
21
- value: 0.14698866640019598
22
  ---
23
 
24
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -26,10 +11,7 @@ should probably proofread and complete it, then remove this comment. -->
26
 
27
  # mini-roberta-javanese
28
 
29
- This model is a fine-tuned version of [](https://huggingface.co/) on the akahana/GlotCC-V1-jav-Latn default dataset.
30
- It achieves the following results on the evaluation set:
31
- - Loss: 6.3746
32
- - Accuracy: 0.1470
33
 
34
  ## Model description
35
 
@@ -54,7 +36,7 @@ The following hyperparameters were used during training:
54
  - seed: 42
55
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
  - lr_scheduler_type: linear
57
- - num_epochs: 15.0
58
  - mixed_precision_training: Native AMP
59
 
60
  ### Training results
 
1
  ---
2
  tags:
3
  - generated_from_trainer
 
 
 
 
4
  model-index:
5
  - name: mini-roberta-javanese
6
+ results: []
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
11
 
12
  # mini-roberta-javanese
13
 
14
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
 
 
 
15
 
16
  ## Model description
17
 
 
36
  - seed: 42
37
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
38
  - lr_scheduler_type: linear
39
+ - num_epochs: 30.0
40
  - mixed_precision_training: Native AMP
41
 
42
  ### Training results