End of training
Browse files- README.md +20 -2
- all_results.json +12 -12
- eval_results.json +7 -7
- runs/Jul16_23-39-50_1f9b0cd15cbb/events.out.tfevents.1721180281.1f9b0cd15cbb.1376.1 +3 -0
- train_results.json +6 -6
- trainer_state.json +364 -5
README.md
CHANGED
@@ -1,9 +1,24 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
4 |
model-index:
|
5 |
- name: roberta-javanese
|
6 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -11,7 +26,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
11 |
|
12 |
# roberta-javanese
|
13 |
|
14 |
-
This model is a fine-tuned version of [](https://huggingface.co/) on
|
|
|
|
|
|
|
15 |
|
16 |
## Model description
|
17 |
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- akahana/GlotCC-V1-jav-Latn
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
model-index:
|
9 |
- name: roberta-javanese
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Masked Language Modeling
|
13 |
+
type: fill-mask
|
14 |
+
dataset:
|
15 |
+
name: akahana/GlotCC-V1-jav-Latn default
|
16 |
+
type: akahana/GlotCC-V1-jav-Latn
|
17 |
+
args: default
|
18 |
+
metrics:
|
19 |
+
- name: Accuracy
|
20 |
+
type: accuracy
|
21 |
+
value: 0.5187187058672487
|
22 |
---
|
23 |
|
24 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
26 |
|
27 |
# roberta-javanese
|
28 |
|
29 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the akahana/GlotCC-V1-jav-Latn default dataset.
|
30 |
+
It achieves the following results on the evaluation set:
|
31 |
+
- Loss: 2.9966
|
32 |
+
- Accuracy: 0.5187
|
33 |
|
34 |
## Model description
|
35 |
|
all_results.json
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
"eval_samples": 4053,
|
7 |
-
"eval_samples_per_second":
|
8 |
-
"eval_steps_per_second": 33.
|
9 |
-
"perplexity":
|
10 |
-
"total_flos": 1.
|
11 |
-
"train_loss": 0.
|
12 |
-
"train_runtime":
|
13 |
"train_samples": 80219,
|
14 |
-
"train_samples_per_second":
|
15 |
-
"train_steps_per_second":
|
16 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_accuracy": 0.5187187058672487,
|
4 |
+
"eval_loss": 2.996563196182251,
|
5 |
+
"eval_runtime": 30.3359,
|
6 |
"eval_samples": 4053,
|
7 |
+
"eval_samples_per_second": 133.604,
|
8 |
+
"eval_steps_per_second": 33.426,
|
9 |
+
"perplexity": 20.01662535880206,
|
10 |
+
"total_flos": 1.5839169150106368e+17,
|
11 |
+
"train_loss": 0.47119966579742084,
|
12 |
+
"train_runtime": 6930.0607,
|
13 |
"train_samples": 80219,
|
14 |
+
"train_samples_per_second": 347.265,
|
15 |
+
"train_steps_per_second": 21.705
|
16 |
}
|
eval_results.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
"eval_samples": 4053,
|
7 |
-
"eval_samples_per_second":
|
8 |
-
"eval_steps_per_second": 33.
|
9 |
-
"perplexity":
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_accuracy": 0.5187187058672487,
|
4 |
+
"eval_loss": 2.996563196182251,
|
5 |
+
"eval_runtime": 30.3359,
|
6 |
"eval_samples": 4053,
|
7 |
+
"eval_samples_per_second": 133.604,
|
8 |
+
"eval_steps_per_second": 33.426,
|
9 |
+
"perplexity": 20.01662535880206
|
10 |
}
|
runs/Jul16_23-39-50_1f9b0cd15cbb/events.out.tfevents.1721180281.1f9b0cd15cbb.1376.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:690947851e0d8d29fd488745b8000d62a6dd22a837afe3681da84f72ae3418c6
|
3 |
+
size 417
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos": 1.
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
"train_samples": 80219,
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second":
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"total_flos": 1.5839169150106368e+17,
|
4 |
+
"train_loss": 0.47119966579742084,
|
5 |
+
"train_runtime": 6930.0607,
|
6 |
"train_samples": 80219,
|
7 |
+
"train_samples_per_second": 347.265,
|
8 |
+
"train_steps_per_second": 21.705
|
9 |
}
|
trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -1802,12 +1802,371 @@
|
|
1802 |
"train_runtime": 7682.6614,
|
1803 |
"train_samples_per_second": 261.039,
|
1804 |
"train_steps_per_second": 16.316
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1805 |
}
|
1806 |
],
|
1807 |
"logging_steps": 500,
|
1808 |
-
"max_steps":
|
1809 |
"num_input_tokens_seen": 0,
|
1810 |
-
"num_train_epochs":
|
1811 |
"save_steps": 500,
|
1812 |
"stateful_callbacks": {
|
1813 |
"TrainerControl": {
|
@@ -1821,7 +2180,7 @@
|
|
1821 |
"attributes": {}
|
1822 |
}
|
1823 |
},
|
1824 |
-
"total_flos": 1.
|
1825 |
"train_batch_size": 16,
|
1826 |
"trial_name": null,
|
1827 |
"trial_params": null
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 30.0,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 150420,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
1802 |
"train_runtime": 7682.6614,
|
1803 |
"train_samples_per_second": 261.039,
|
1804 |
"train_steps_per_second": 16.316
|
1805 |
+
},
|
1806 |
+
{
|
1807 |
+
"epoch": 25.02991623454328,
|
1808 |
+
"grad_norm": 6.8266754150390625,
|
1809 |
+
"learning_rate": 4.9950139609094536e-05,
|
1810 |
+
"loss": 2.9041,
|
1811 |
+
"step": 125500
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 25.12963701635421,
|
1815 |
+
"grad_norm": 7.047895431518555,
|
1816 |
+
"learning_rate": 4.9783938306076325e-05,
|
1817 |
+
"loss": 2.9501,
|
1818 |
+
"step": 126000
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 25.229357798165136,
|
1822 |
+
"grad_norm": 6.489243507385254,
|
1823 |
+
"learning_rate": 4.9617737003058106e-05,
|
1824 |
+
"loss": 2.9795,
|
1825 |
+
"step": 126500
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 25.329078579976066,
|
1829 |
+
"grad_norm": 6.933114528656006,
|
1830 |
+
"learning_rate": 4.9451535700039895e-05,
|
1831 |
+
"loss": 2.9906,
|
1832 |
+
"step": 127000
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 25.428799361786997,
|
1836 |
+
"grad_norm": 7.721564769744873,
|
1837 |
+
"learning_rate": 4.9285334397021676e-05,
|
1838 |
+
"loss": 2.9822,
|
1839 |
+
"step": 127500
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 25.528520143597927,
|
1843 |
+
"grad_norm": 7.604334831237793,
|
1844 |
+
"learning_rate": 4.911913309400346e-05,
|
1845 |
+
"loss": 2.9751,
|
1846 |
+
"step": 128000
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 25.628240925408853,
|
1850 |
+
"grad_norm": 6.689730644226074,
|
1851 |
+
"learning_rate": 4.8952931790985246e-05,
|
1852 |
+
"loss": 2.9806,
|
1853 |
+
"step": 128500
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 25.727961707219784,
|
1857 |
+
"grad_norm": 7.001711368560791,
|
1858 |
+
"learning_rate": 4.878673048796703e-05,
|
1859 |
+
"loss": 2.9701,
|
1860 |
+
"step": 129000
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 25.827682489030714,
|
1864 |
+
"grad_norm": 6.627374649047852,
|
1865 |
+
"learning_rate": 4.862052918494881e-05,
|
1866 |
+
"loss": 2.982,
|
1867 |
+
"step": 129500
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"epoch": 25.927403270841644,
|
1871 |
+
"grad_norm": 6.500030517578125,
|
1872 |
+
"learning_rate": 4.8454660284536635e-05,
|
1873 |
+
"loss": 2.9497,
|
1874 |
+
"step": 130000
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 26.027124052652574,
|
1878 |
+
"grad_norm": 6.908927917480469,
|
1879 |
+
"learning_rate": 4.828845898151842e-05,
|
1880 |
+
"loss": 2.9201,
|
1881 |
+
"step": 130500
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 26.1268448344635,
|
1885 |
+
"grad_norm": 7.953597068786621,
|
1886 |
+
"learning_rate": 4.8122257678500205e-05,
|
1887 |
+
"loss": 2.8916,
|
1888 |
+
"step": 131000
|
1889 |
+
},
|
1890 |
+
{
|
1891 |
+
"epoch": 26.22656561627443,
|
1892 |
+
"grad_norm": 7.111712455749512,
|
1893 |
+
"learning_rate": 4.795605637548199e-05,
|
1894 |
+
"loss": 2.8983,
|
1895 |
+
"step": 131500
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 26.32628639808536,
|
1899 |
+
"grad_norm": 7.099549293518066,
|
1900 |
+
"learning_rate": 4.778985507246377e-05,
|
1901 |
+
"loss": 2.8862,
|
1902 |
+
"step": 132000
|
1903 |
+
},
|
1904 |
+
{
|
1905 |
+
"epoch": 26.426007179896292,
|
1906 |
+
"grad_norm": 6.708031177520752,
|
1907 |
+
"learning_rate": 4.762365376944555e-05,
|
1908 |
+
"loss": 2.8828,
|
1909 |
+
"step": 132500
|
1910 |
+
},
|
1911 |
+
{
|
1912 |
+
"epoch": 26.52572796170722,
|
1913 |
+
"grad_norm": 6.638050079345703,
|
1914 |
+
"learning_rate": 4.745745246642734e-05,
|
1915 |
+
"loss": 2.9,
|
1916 |
+
"step": 133000
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 26.62544874351815,
|
1920 |
+
"grad_norm": 6.474231243133545,
|
1921 |
+
"learning_rate": 4.729125116340912e-05,
|
1922 |
+
"loss": 2.8729,
|
1923 |
+
"step": 133500
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 26.72516952532908,
|
1927 |
+
"grad_norm": 7.071346759796143,
|
1928 |
+
"learning_rate": 4.712538226299694e-05,
|
1929 |
+
"loss": 2.878,
|
1930 |
+
"step": 134000
|
1931 |
+
},
|
1932 |
+
{
|
1933 |
+
"epoch": 26.82489030714001,
|
1934 |
+
"grad_norm": 7.4629740715026855,
|
1935 |
+
"learning_rate": 4.695918095997873e-05,
|
1936 |
+
"loss": 2.8949,
|
1937 |
+
"step": 134500
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 26.924611088950936,
|
1941 |
+
"grad_norm": 7.166282653808594,
|
1942 |
+
"learning_rate": 4.679331205956655e-05,
|
1943 |
+
"loss": 2.8834,
|
1944 |
+
"step": 135000
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 27.024331870761866,
|
1948 |
+
"grad_norm": 7.213958263397217,
|
1949 |
+
"learning_rate": 4.6627110756548334e-05,
|
1950 |
+
"loss": 2.8722,
|
1951 |
+
"step": 135500
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 27.124052652572797,
|
1955 |
+
"grad_norm": 6.917830467224121,
|
1956 |
+
"learning_rate": 4.6460909453530116e-05,
|
1957 |
+
"loss": 2.812,
|
1958 |
+
"step": 136000
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 27.223773434383727,
|
1962 |
+
"grad_norm": 7.030029296875,
|
1963 |
+
"learning_rate": 4.62947081505119e-05,
|
1964 |
+
"loss": 2.7973,
|
1965 |
+
"step": 136500
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 27.323494216194653,
|
1969 |
+
"grad_norm": 6.927401542663574,
|
1970 |
+
"learning_rate": 4.6128506847493686e-05,
|
1971 |
+
"loss": 2.8567,
|
1972 |
+
"step": 137000
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"epoch": 27.423214998005584,
|
1976 |
+
"grad_norm": 7.063901424407959,
|
1977 |
+
"learning_rate": 4.596230554447547e-05,
|
1978 |
+
"loss": 2.8119,
|
1979 |
+
"step": 137500
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 27.522935779816514,
|
1983 |
+
"grad_norm": 6.619449138641357,
|
1984 |
+
"learning_rate": 4.5796104241457256e-05,
|
1985 |
+
"loss": 2.814,
|
1986 |
+
"step": 138000
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 27.622656561627444,
|
1990 |
+
"grad_norm": 6.861698150634766,
|
1991 |
+
"learning_rate": 4.562990293843904e-05,
|
1992 |
+
"loss": 2.7966,
|
1993 |
+
"step": 138500
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 27.72237734343837,
|
1997 |
+
"grad_norm": 5.698707580566406,
|
1998 |
+
"learning_rate": 4.5464034038026856e-05,
|
1999 |
+
"loss": 2.8274,
|
2000 |
+
"step": 139000
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 27.8220981252493,
|
2004 |
+
"grad_norm": 6.638801574707031,
|
2005 |
+
"learning_rate": 4.5297832735008645e-05,
|
2006 |
+
"loss": 2.8111,
|
2007 |
+
"step": 139500
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 27.92181890706023,
|
2011 |
+
"grad_norm": 7.414352893829346,
|
2012 |
+
"learning_rate": 4.5131631431990427e-05,
|
2013 |
+
"loss": 2.8219,
|
2014 |
+
"step": 140000
|
2015 |
+
},
|
2016 |
+
{
|
2017 |
+
"epoch": 28.02153968887116,
|
2018 |
+
"grad_norm": 7.000102519989014,
|
2019 |
+
"learning_rate": 4.4965430128972215e-05,
|
2020 |
+
"loss": 2.8059,
|
2021 |
+
"step": 140500
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 28.121260470682092,
|
2025 |
+
"grad_norm": 7.648940563201904,
|
2026 |
+
"learning_rate": 4.4799561228560034e-05,
|
2027 |
+
"loss": 2.7801,
|
2028 |
+
"step": 141000
|
2029 |
+
},
|
2030 |
+
{
|
2031 |
+
"epoch": 28.22098125249302,
|
2032 |
+
"grad_norm": 6.238720417022705,
|
2033 |
+
"learning_rate": 4.4633359925541815e-05,
|
2034 |
+
"loss": 2.7611,
|
2035 |
+
"step": 141500
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"epoch": 28.32070203430395,
|
2039 |
+
"grad_norm": 7.083422660827637,
|
2040 |
+
"learning_rate": 4.4467491025129634e-05,
|
2041 |
+
"loss": 2.7476,
|
2042 |
+
"step": 142000
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 28.42042281611488,
|
2046 |
+
"grad_norm": 7.1048760414123535,
|
2047 |
+
"learning_rate": 4.430128972211142e-05,
|
2048 |
+
"loss": 2.7601,
|
2049 |
+
"step": 142500
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 28.52014359792581,
|
2053 |
+
"grad_norm": 6.950742244720459,
|
2054 |
+
"learning_rate": 4.4135088419093204e-05,
|
2055 |
+
"loss": 2.7615,
|
2056 |
+
"step": 143000
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 28.619864379736736,
|
2060 |
+
"grad_norm": 7.063054084777832,
|
2061 |
+
"learning_rate": 4.396888711607499e-05,
|
2062 |
+
"loss": 2.7583,
|
2063 |
+
"step": 143500
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"epoch": 28.719585161547666,
|
2067 |
+
"grad_norm": 6.951484680175781,
|
2068 |
+
"learning_rate": 4.3802685813056774e-05,
|
2069 |
+
"loss": 2.748,
|
2070 |
+
"step": 144000
|
2071 |
+
},
|
2072 |
+
{
|
2073 |
+
"epoch": 28.819305943358597,
|
2074 |
+
"grad_norm": 7.212677955627441,
|
2075 |
+
"learning_rate": 4.363648451003856e-05,
|
2076 |
+
"loss": 2.7542,
|
2077 |
+
"step": 144500
|
2078 |
+
},
|
2079 |
+
{
|
2080 |
+
"epoch": 28.919026725169527,
|
2081 |
+
"grad_norm": 6.691658973693848,
|
2082 |
+
"learning_rate": 4.3470283207020344e-05,
|
2083 |
+
"loss": 2.753,
|
2084 |
+
"step": 145000
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 29.018747506980453,
|
2088 |
+
"grad_norm": 7.1954874992370605,
|
2089 |
+
"learning_rate": 4.330408190400213e-05,
|
2090 |
+
"loss": 2.7332,
|
2091 |
+
"step": 145500
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 29.118468288791384,
|
2095 |
+
"grad_norm": 6.654098987579346,
|
2096 |
+
"learning_rate": 4.313821300358995e-05,
|
2097 |
+
"loss": 2.7109,
|
2098 |
+
"step": 146000
|
2099 |
+
},
|
2100 |
+
{
|
2101 |
+
"epoch": 29.218189070602314,
|
2102 |
+
"grad_norm": 6.924403667449951,
|
2103 |
+
"learning_rate": 4.297201170057173e-05,
|
2104 |
+
"loss": 2.7076,
|
2105 |
+
"step": 146500
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"epoch": 29.317909852413244,
|
2109 |
+
"grad_norm": 7.731849193572998,
|
2110 |
+
"learning_rate": 4.280581039755352e-05,
|
2111 |
+
"loss": 2.6943,
|
2112 |
+
"step": 147000
|
2113 |
+
},
|
2114 |
+
{
|
2115 |
+
"epoch": 29.41763063422417,
|
2116 |
+
"grad_norm": 7.095526218414307,
|
2117 |
+
"learning_rate": 4.26396090945353e-05,
|
2118 |
+
"loss": 2.72,
|
2119 |
+
"step": 147500
|
2120 |
+
},
|
2121 |
+
{
|
2122 |
+
"epoch": 29.5173514160351,
|
2123 |
+
"grad_norm": 7.1939520835876465,
|
2124 |
+
"learning_rate": 4.247340779151709e-05,
|
2125 |
+
"loss": 2.6772,
|
2126 |
+
"step": 148000
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 29.61707219784603,
|
2130 |
+
"grad_norm": 7.466503620147705,
|
2131 |
+
"learning_rate": 4.230753889110491e-05,
|
2132 |
+
"loss": 2.7193,
|
2133 |
+
"step": 148500
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 29.71679297965696,
|
2137 |
+
"grad_norm": 6.902263164520264,
|
2138 |
+
"learning_rate": 4.214133758808669e-05,
|
2139 |
+
"loss": 2.716,
|
2140 |
+
"step": 149000
|
2141 |
+
},
|
2142 |
+
{
|
2143 |
+
"epoch": 29.81651376146789,
|
2144 |
+
"grad_norm": 7.366625785827637,
|
2145 |
+
"learning_rate": 4.197513628506848e-05,
|
2146 |
+
"loss": 2.7009,
|
2147 |
+
"step": 149500
|
2148 |
+
},
|
2149 |
+
{
|
2150 |
+
"epoch": 29.91623454327882,
|
2151 |
+
"grad_norm": 6.991941452026367,
|
2152 |
+
"learning_rate": 4.180893498205026e-05,
|
2153 |
+
"loss": 2.7202,
|
2154 |
+
"step": 150000
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 30.0,
|
2158 |
+
"step": 150420,
|
2159 |
+
"total_flos": 1.5839169150106368e+17,
|
2160 |
+
"train_loss": 0.47119966579742084,
|
2161 |
+
"train_runtime": 6930.0607,
|
2162 |
+
"train_samples_per_second": 347.265,
|
2163 |
+
"train_steps_per_second": 21.705
|
2164 |
}
|
2165 |
],
|
2166 |
"logging_steps": 500,
|
2167 |
+
"max_steps": 150420,
|
2168 |
"num_input_tokens_seen": 0,
|
2169 |
+
"num_train_epochs": 30,
|
2170 |
"save_steps": 500,
|
2171 |
"stateful_callbacks": {
|
2172 |
"TrainerControl": {
|
|
|
2180 |
"attributes": {}
|
2181 |
}
|
2182 |
},
|
2183 |
+
"total_flos": 1.5839169150106368e+17,
|
2184 |
"train_batch_size": 16,
|
2185 |
"trial_name": null,
|
2186 |
"trial_params": null
|