File size: 2,252 Bytes
2084769
 
 
 
 
 
 
 
 
5b44e5a
2084769
 
 
 
 
5b44e5a
2084769
 
 
 
 
5b44e5a
2084769
5b44e5a
2084769
 
 
 
 
 
 
 
 
 
 
 
b7e917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- cats_vs_dogs
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: vit-base-cats-vs-dogs
  results:
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: cats_vs_dogs
      type: cats_vs_dogs
      args: default
    metrics:
    - type: accuracy
      value: 0.9883257403189066
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-cats-vs-dogs

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0369
- Accuracy: 0.9883

## how to use
```python
from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('akahana/vit-base-cats-vs-dogs')
inputs = feature_extractor(images=image, return_tensors="pt")

outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0949        | 1.0   | 2488 | 0.0369          | 0.9883   |


### Framework versions

- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3