File size: 4,353 Bytes
4ca97d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: whisper-medium-sb-lug-eng
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-medium-sb-lug-eng

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1179
- Wer Lug: 0.558
- Wer Eng: 0.025
- Wer Mean: 0.292
- Cer Lug: 0.285
- Cer Eng: 0.011
- Cer Mean: 0.148

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 12000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer Lug | Wer Eng | Wer Mean | Cer Lug | Cer Eng | Cer Mean |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:-------:|:--------:|:-------:|:-------:|:--------:|
| 0.7169        | 0.0417 | 500   | 0.2614          | 0.715   | 0.039   | 0.377    | 0.264   | 0.02    | 0.142    |
| 0.5343        | 0.0833 | 1000  | 0.1939          | 0.391   | 0.029   | 0.21     | 0.147   | 0.013   | 0.08     |
| 0.4529        | 0.125  | 1500  | 0.1864          | 0.256   | 0.032   | 0.144    | 0.069   | 0.015   | 0.042    |
| 0.3733        | 0.1667 | 2000  | 0.1597          | 0.276   | 0.024   | 0.15     | 0.093   | 0.01    | 0.052    |
| 0.3874        | 0.2083 | 2500  | 0.1520          | 0.733   | 0.023   | 0.378    | 0.314   | 0.01    | 0.162    |
| 0.3641        | 0.25   | 3000  | 0.1408          | 0.762   | 0.027   | 0.395    | 0.339   | 0.012   | 0.176    |
| 0.3682        | 0.2917 | 3500  | 0.1413          | 0.956   | 0.016   | 0.486    | 0.503   | 0.006   | 0.254    |
| 0.3379        | 0.3333 | 4000  | 0.1376          | 0.358   | 0.027   | 0.192    | 0.177   | 0.01    | 0.094    |
| 0.3324        | 0.375  | 4500  | 0.1317          | 0.249   | 0.022   | 0.135    | 0.107   | 0.007   | 0.057    |
| 0.3003        | 0.4167 | 5000  | 0.1304          | 0.403   | 0.025   | 0.214    | 0.174   | 0.009   | 0.091    |
| 0.2259        | 1.0383 | 5500  | 0.1294          | 0.608   | 0.021   | 0.314    | 0.263   | 0.007   | 0.135    |
| 0.2259        | 1.08   | 6000  | 0.1309          | 0.835   | 0.025   | 0.43     | 0.417   | 0.008   | 0.213    |
| 0.2531        | 1.1217 | 6500  | 0.1252          | 0.249   | 0.022   | 0.135    | 0.109   | 0.008   | 0.058    |
| 0.2258        | 1.1633 | 7000  | 0.1259          | 0.384   | 0.023   | 0.203    | 0.178   | 0.007   | 0.093    |
| 0.2205        | 1.205  | 7500  | 0.1264          | 0.376   | 0.021   | 0.198    | 0.181   | 0.007   | 0.094    |
| 0.2235        | 1.2467 | 8000  | 0.1274          | 0.395   | 0.025   | 0.21     | 0.196   | 0.008   | 0.102    |
| 0.2219        | 1.2883 | 8500  | 0.1252          | 0.349   | 0.029   | 0.189    | 0.162   | 0.01    | 0.086    |
| 0.2334        | 1.33   | 9000  | 0.1224          | 0.292   | 0.028   | 0.16     | 0.128   | 0.01    | 0.069    |
| 0.2339        | 1.3717 | 9500  | 0.1207          | 0.305   | 0.026   | 0.166    | 0.136   | 0.01    | 0.073    |
| 0.2094        | 1.4133 | 10000 | 0.1194          | 0.569   | 0.023   | 0.296    | 0.276   | 0.009   | 0.143    |
| 0.1643        | 2.035  | 10500 | 0.1184          | 0.818   | 0.026   | 0.422    | 0.466   | 0.011   | 0.239    |
| 0.1549        | 2.0767 | 11000 | 0.1196          | 0.651   | 0.022   | 0.336    | 0.374   | 0.008   | 0.191    |
| 0.1727        | 2.1183 | 11500 | 0.1182          | 0.547   | 0.025   | 0.286    | 0.29    | 0.011   | 0.15     |
| 0.1617        | 2.16   | 12000 | 0.1179          | 0.558   | 0.025   | 0.292    | 0.285   | 0.011   | 0.148    |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1