akjindal53244 commited on
Commit
5d779ad
1 Parent(s): 04581b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -12
README.md CHANGED
@@ -4,6 +4,8 @@ language:
4
  - en
5
  tags:
6
  - Mathematical Reasoning
 
 
7
  ---
8
  # Model Card for Model ID
9
 
@@ -11,42 +13,144 @@ tags:
11
  [![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-Apache_2.0-green.svg)](LICENSE)
12
  [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)
13
 
14
- This model is instruction-tuned [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) model using QLoRA on single RTX 4090 GPU. Model is tuned to reason and answer mathematical problems. Model is also capable of writing a Python program that upon compilation prints answer to the question. To generate python program, you can ask model to write a Python program (as part of prompt) along with question. Refer to **Results** section for examples.
15
 
16
  ## Model Details
17
 
18
- It is a Instruction-tuned Mistral-7B and performs mathematical reasoning and optionally write a Python program.
19
 
20
  ### Model Description
21
 
22
  - **Project GitHub Page:** https://github.com/akjindal53244/Arithmo-Mistral-7B
23
  - **Developed by:** [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/)
24
  - **Funded by:** self-work
25
- - **Model type:** Instruction-tuned
26
  - **Language(s) (NLP):** English
27
  - **Finetuned from model:** mistralai/Mistral-7B-v0.1
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## How to query the model
31
 
32
- Arithmo-Mistral-7B is trained with the following format:
 
 
 
 
 
 
33
 
34
- ### CoT Format:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ```
36
  Question: <question>
37
 
38
  Answer:
39
  ```
40
 
41
- ### PoT Format:
42
  ```
43
  Question: <question> <python_prompt>
44
 
45
  Answer:
46
  ```
47
-
48
- It will perform best if queried in this way.
49
-
50
- ## How to Get Started with the Model
51
-
52
- Model is compatibale with Huggingface. I will publish a generation/inference script soon. Model inference on CPU also works; I have tested it on Macbook M1 Pro. GPU inference is much faster than CPU inference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - en
5
  tags:
6
  - Mathematical Reasoning
7
+ datasets:
8
+ - akjindal53244/Arithmo-Data
9
  ---
10
  # Model Card for Model ID
11
 
 
13
  [![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-Apache_2.0-green.svg)](LICENSE)
14
  [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)
15
 
16
+ **P.S.:** Please reach out to [Ashvini Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/) if you would be interested in supporting compute need. We are looking for small-scale support so we'd appreciate any kind of help! :)
17
 
18
  ## Model Details
19
 
20
+ Arithmo-Mistral-7B is trained to reason and answer mathematical problems and is also capable of writing a Python program that upon execution prints answer to the question. We used [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base model and used QLoRA to fine-tune it on a single RTX 4090 GPU.
21
 
22
  ### Model Description
23
 
24
  - **Project GitHub Page:** https://github.com/akjindal53244/Arithmo-Mistral-7B
25
  - **Developed by:** [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/)
26
  - **Funded by:** self-work
27
+ - **Model type:** fine-tuned
28
  - **Language(s) (NLP):** English
29
  - **Finetuned from model:** mistralai/Mistral-7B-v0.1
30
 
31
+ ## Results
32
+
33
+ Arithmo-Mistral-7B outperforms existing 7B and 13B state-of-the-art Mathematical Reasoning models. Refer to [Comparing Arithmo-Mistral-7B with other LLM models](https://github.com/akjindal53244/Arithmo-Mistral-7B/tree/master#comparing-arithmo-mistral-7b-with-other-llm-models) section for more details.
34
+
35
+ <table>
36
+ <thead>
37
+ <tr>
38
+ <th>Prompt Approach</th>
39
+ <th>GSM8k</th>
40
+ <th>MATH</th>
41
+ </tr>
42
+ </thead>
43
+ <tbody>
44
+ <tr>
45
+ <td>Zero-Shot CoT</td>
46
+ <td><b>74.7</b></td>
47
+ <td><b>25.3</b></td>
48
+ </tr>
49
+ <tr>
50
+ <td>Zero-Shot PoT</td>
51
+ <td><b>71.2</b></td>
52
+ <td>-</td>
53
+ </tr>
54
+ </tbody>
55
+ </table>
56
+
57
+ - **Zero-Shot CoT**: On providing a question as prompt, model generates reasoning steps to solve the question along with answer. We check if answer matches with ground-truth.
58
+ - **Zero-Shot PoT**: We prompt the model to generate a Python program for the given question. During inference, we execute the Python program generated by the model and check if the program output matches with ground-truth answer.
59
+
60
+
61
+ ## Installation
62
+
63
+ ```
64
+ pip install transformers == 4.34.0
65
+ pip install accelerate
66
+ pip install sentencepiece
67
+ pip install protobuf
68
+
69
+ # If you are GPU poor like me
70
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
71
+
72
+ # If you have a GPU.
73
+ pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu118
74
+ pip install scipy
75
+ pip install bitsandbytes
76
+ ```
77
+
78
 
79
  ## How to query the model
80
 
81
+ ```
82
+ # Set `run_model_on_gpu` to `False` if you are running on CPU. Model will generate reasoning steps with answer for your question. If you want to generate Python program, uncomment line-69 that adds a Python prompt.
83
+ # This script automatically does formatting for you, so you just need to type question (eg: `What is 2+2?`) without any prefix like `Question:`, etc.**
84
+
85
+ $ python query_model.py
86
+ ```
87
+ **Note:** Above script automatically does formatting for you, so you just need to type question (eg: `What is 2+2?`) without any prefix like `Question:`, etc. Checkout [query_model.py](https://github.com/akjindal53244/Arithmo-Mistral-7B/blob/master/query_model.py) for more details. <br><br>
88
 
89
+ ##### Sample Input:
90
+ ```
91
+ Question: There are total 10 children. I have to give 1 apple to first child, 2 apples to second child, 3 apples to third child, and so on. How many apples do I need?
92
+ ```
93
+ ##### Model Output:
94
+ ```
95
+ Answer: The total number of apples needed is the sum of the first 10 positive integers.
96
+ This can be calculated using the formula for the sum of an arithmetic series:
97
+ \[S = \frac{n}{2}(a_1 + a_n),\]
98
+ where $S$ is the sum, $n$ is the number of terms, $a_1$ is the first term, and $a_n$ is the last term.
99
+ In this case, $n = 10$, $a_1 = 1$, and $a_n = 10$.
100
+ Plugging these values into the formula, we get:
101
+ \[S = \frac{10}{2}(1 + 10) = 5(11) = \boxed{55}.\]
102
+ The answer is: 55
103
+ ```
104
+
105
+ Arithmo-Mistral-7B is trained with the following format:
106
+ #### CoT Format (generate reasoning steps with answer):
107
  ```
108
  Question: <question>
109
 
110
  Answer:
111
  ```
112
 
113
+ #### PoT Format (generate a python program):
114
  ```
115
  Question: <question> <python_prompt>
116
 
117
  Answer:
118
  ```
119
+ It will perform best if queried in this way with your own script.
120
+
121
+ ## Comparing Arithmo-Mistral-7B with other LLM models.
122
+ Results for all models except `Arithmo-Mistral-7B` are taken from [MetaMath](https://github.com/meta-math/MetaMath/blob/main/README.MD) repository.
123
+
124
+ | Model | GSM8k Pass@1 | MATH Pass@1 |
125
+ |---------------------|--------------|-------------|
126
+ | MPT-7B | 6.8 | 3.0 |
127
+ | Falcon-7B | 6.8 | 2.3 |
128
+ | LLaMA-1-7B | 11.0 | 2.9 |
129
+ | LLaMA-2-7B | 14.6 | 2.5 |
130
+ | MPT-30B | 15.2 | 3.1 |
131
+ | LLaMA-1-13B | 17.8 | 3.9 |
132
+ | GPT-Neo-2.7B | 19.5 | -- |
133
+ | Falcon-40B | 19.6 | 2.5 |
134
+ | Baichuan-chat-13B | 23.9 | -- |
135
+ | Vicuna-v1.3-13B | 27.6 | -- |
136
+ | LLaMA-2-13B | 28.7 | 3.9 |
137
+ | InternLM-7B | 31.2 | -- |
138
+ | ChatGLM-2-6B | 32.4 | -- |
139
+ | GPT-J-6B | 34.9 | -- |
140
+ | LLaMA-1-33B | 35.6 | 3.9 |
141
+ | LLaMA-2-34B | 42.2 | 6.24 |
142
+ | RFT-7B | 50.3 | -- |
143
+ | LLaMA-1-65B | 50.9 | 10.6 |
144
+ | Qwen-7B | 51.6 | -- |
145
+ | WizardMath-7B | 54.9 | 10.7 |
146
+ | LLaMA-2-70B | 56.8 | 13.5 |
147
+ | WizardMath-13B | 63.9 | 14.0 |
148
+ | MetaMath-7B | 66.5 | 19.8 |
149
+ | MetaMath-13B | 72.3 | 22.4 |
150
+ | 🔥 **Arithmo-Mistral-7B Zero-Shot PoT** | **71.2** | -- |
151
+ | 🔥 **Arithmo-Mistral-7B Zero-Shot CoT** | **74.7** | **25.3** |
152
+ | WizardMath-70B | **81.6** | 22.7 |
153
+ | MetaMath-70B | **82.3** | **26.6** |
154
+
155
+
156
+ If you are interested in reproducing the resullts, visit https://github.com/akjindal53244/Arithmo-Mistral-7B#reproducing-results section.