File size: 5,879 Bytes
e04b522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f46f953
e04b522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0dfd9
27da398
 
e04b522
fd38dbe
 
dfb2a7e
fd38dbe
 
bd599d0
 
fd38dbe
3ee8c4f
fd38dbe
 
 
 
 
2649f69
 
 
 
 
 
 
 
 
 
 
a820aca
2649f69
a820aca
2649f69
 
 
 
fd38dbe
 
 
 
 
 
 
 
 
 
77f68ce
 
 
 
0c52000
3ee8c4f
 
 
 
 
77f68ce
fd38dbe
 
032665d
 
3ee8c4f
dfb2a7e
3ee8c4f
032665d
 
 
dfb2a7e
032665d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
language:
- en
- multilingual
- de
- it
- es
- fr
tags:
- instruction-tuning
- text-generation-inference
- text2text-generation
widget:
- text: Write an essay about meditation. [EOI]
  example_title: Essay Generation
- text: Give me 5 steps to clean my room. [EOI]
  example_title: How-to Instructions
- text: How are the continents formed? [EOI]
  example_title: Question-Answering
- text: >-
    Prompt: A man draws a gun in a dark alley and asks for your wallet. You
    begrudgingly obey. He throws it on the ground, shoots it till it screeches,
    and turns to you; 'you are safe now'. Write a story about given prompt.
    [EOI]
  example_title: Story Generation
- text: >-
    Write directions of a cooking recipe with these ingredients: chicken breast,
    carrots, green peas, celery, butter, onion, flour, salt, black pepper,
    celery seed, chicken broth, milk, unbaked pie crusts [EOI]
  example_title: Recipe Generation
- text: >-
    Schreiben Sie einen Blogbeitrag über die Vorteile des Lesens von Büchern.
    [EOI]
  example_title: German Essay Generation
inference:
  parameters:
    top_p: 0.9
    do_sample: true
    max_length: 75
datasets:
- akoksal/LongForm
---

## LongForm-OPT-2.7B
The LongForm dataset is created by leveraging English corpus examples with reverse instructions. We select a diverse set of human-written documents from existing corpora such as C4 and Wikipedia and generate instructions for the given documents via LLMs. Then, we extend these examples with structured corpora examples such as Stack Exchange and WikiHow and task examples such as question answering, email writing, grammar error correction, story/poem generation, and text summarization.

Github Repo: https://github.com/akoksal/LongForm
![The LongForm dataset](https://github.com/akoksal/LongForm/blob/main/figures/intro_example.jpg?raw=true)


### For LongForm OPT and LLaMA models: Use [EOI] to indicate the end of instruction.

LongForm-**T5-XL**: https://huggingface.co/akoksal/LongForm-T5-XL

LongForm-**OPT-6.7B**: https://huggingface.co/akoksal/LongForm-OPT-6.7B

## How to Load
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("akoksal/LongForm-OPT-2.7B")
tokenizer = AutoTokenizer.from_pretrained("akoksal/LongForm-OPT-2.7B")

instruction = "Write an essay about meditation. [EOI]"
torch.manual_seed(42)
input_ids = tokenizer(instruction, return_tensors="pt").input_ids
target_ids = model.generate(input_ids, do_sample=True, max_new_tokens=50, top_p=0.9)
tokenizer.decode(target_ids[0], skip_special_tokens=True)
# Output:
# > Write an essay about meditation. [EOI]Do you need some inspiration to\
# meditate? Do you know someone who is a great meditator but you aren't sure\
# what to say to them? This might be the perfect opportunity to tell them.\
# The ability to listen and learn and grow can
```

## Evaluation
We provide in-depth evaluation of LongForm models and baselines in the paper. We present the METEOR scores of models in out-of-domain datasets. In all tasks, Recipe Generation (RGen), long-form question answering (ELI5), short story generation (WritingPrompts/WP), LongForm models outperform prior instruction-tuned models.
|          | **All** | **Recipe Generation**             | **ELI5** | **Writing Prompts** |
|-----------------------|---------|-----------------------------------|----------|---------------------|
| **T0++**              | 10.9    | 18.7                              | 3.8      | 10.2                |
| **Tk-Instruct**       | 6.3     | 12.9* | 3.6      | 2.4                 |
| **Flan-T5**           | 10.6    | 20.9* | 3.5      | 7.4                 |
| **Alpaca-LLaMA-7B**   | 14.6    | 19.5                              | 12.5     | 11.8                |
| **OPT-30B**           | 11.1    | 18.6                              | 12.2     | 2.6                 |
| [**LongForm-T5-XL**](https://huggingface.co/akoksal/LongForm-T5-XL)    | 16.3    | 20.2                              | 18.3     | 10.6                |
| [**LongForm-OPT-2.7B**](https://huggingface.co/akoksal/LongForm-OPT-2.7B)   | 17.8    | 15.5                              | 17.9     | **19.9**                |
| [**LongForm-OPT-6.7B**](https://huggingface.co/akoksal/LongForm-OPT-6.7B) | 17.7    | 16.9                              | 17.2     | 19.0                |
| [**LongForm-LLaMA-7B**](https://huggingface.co/akoksal/LongForm-LLaMA-7B-diff)‡ | **19.7**    | **21.7**                              | **18.6**     | 18.9                |

Smaller versions of LongForm-OPT models are also available:
- [**LongForm-OPT-1.3B**](https://huggingface.co/akoksal/LongForm-OPT-1.3B)
- [**LongForm-OPT-350M**](https://huggingface.co/akoksal/LongForm-OPT-350M)
- [**LongForm-OPT-125M**](https://huggingface.co/akoksal/LongForm-OPT-125M)

‡: We can just release the difference between LongForm-LLaMA-7B and pretrained LLaMA-7B publicly due to restrictions of LLaMA models.

## Limitations
The LongForm dataset and models mainly focus on long text generation and have limitations regarding structured prediction tasks in NLP. Additionally, we observe that LongForm models may present hallucination problems similar to those found in LLMs.

## License
The LongForm project is subject to a MIT License with custom limitations for restrictions imposed by OpenAI (for the instruction generation part), as well as the license of language models (OPT, LLaMA, and T5). The WikiHow subset of LongForm-C is subject to the license proposed by WikiHow.

## Citation
```
@misc{koksal2023longform,
      title={LongForm: Effective Instruction Tuning with Reverse Instructions}, 
      author={Abdullatif Köksal and Timo Schick and Anna Korhonen and Hinrich Schütze},
      year={2023},
      eprint={2304.08460},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```