Update README.md
Browse files
README.md
CHANGED
@@ -113,6 +113,8 @@ MURI-101 is a multilingual instruction-following model, fine-tuned using a subse
|
|
113 |
|
114 |
This model was trained on a dataset with multilingual reverse instructions, ensuring that outputs are culturally and linguistically appropriate for the target language, thus reducing translation artifacts.
|
115 |
|
|
|
|
|
116 |
### Model Architecture
|
117 |
- **Base Model**: mT5-XXL
|
118 |
- **Training Data**: Subset of MURI-IT
|
@@ -195,7 +197,17 @@ muri("""این مقاله را خلاصه کنید
|
|
195 |
|
196 |
Thanks to [Google's TRC program](https://sites.research.google/trc/about/) for supporting the training of this model.
|
197 |
|
198 |
-
Check out [the paper](
|
199 |
|
200 |
## Citation
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
This model was trained on a dataset with multilingual reverse instructions, ensuring that outputs are culturally and linguistically appropriate for the target language, thus reducing translation artifacts.
|
115 |
|
116 |
+
[Paper](https://arxiv.org/abs/2409.12958)
|
117 |
+
|
118 |
### Model Architecture
|
119 |
- **Base Model**: mT5-XXL
|
120 |
- **Training Data**: Subset of MURI-IT
|
|
|
197 |
|
198 |
Thanks to [Google's TRC program](https://sites.research.google/trc/about/) for supporting the training of this model.
|
199 |
|
200 |
+
Check out [the paper](https://arxiv.org/abs/2409.12958) for more detailed information on the experiments and results.
|
201 |
|
202 |
## Citation
|
203 |
+
```
|
204 |
+
@misc{koksal2024muri,
|
205 |
+
title={MURI: High-Quality Instruction Tuning Datasets for Low-Resource Languages via Reverse Instructions},
|
206 |
+
author={Abdullatif Köksal and Marion Thaler and Ayyoob Imani and Ahmet Üstün and Anna Korhonen and Hinrich Schütze},
|
207 |
+
year={2024},
|
208 |
+
eprint={2409.12958},
|
209 |
+
archivePrefix={arXiv},
|
210 |
+
primaryClass={cs.CL},
|
211 |
+
url={https://arxiv.org/abs/2409.12958},
|
212 |
+
}
|
213 |
+
```
|