# Ultralytics YOLO ๐, AGPL-3.0 license | |
# Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics | |
# Image is CUDA-optimized for YOLO11 single/multi-GPU training and inference | |
# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3 | |
FROM pytorch/pytorch:2.4.1-cuda12.1-cudnn9-runtime | |
# Set environment variables | |
# Avoid DDP error "MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library" https://github.com/pytorch/pytorch/issues/37377 | |
ENV PYTHONUNBUFFERED=1 \ | |
PYTHONDONTWRITEBYTECODE=1 \ | |
PIP_NO_CACHE_DIR=1 \ | |
PIP_BREAK_SYSTEM_PACKAGES=1 \ | |
MKL_THREADING_LAYER=GNU \ | |
OMP_NUM_THREADS=1 | |
# Downloads to user config dir | |
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \ | |
https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \ | |
/root/.config/Ultralytics/ | |
# Install linux packages | |
# g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package | |
# libsm6 required by libqxcb to create QT-based windows for visualization; set 'QT_DEBUG_PLUGINS=1' to test in docker | |
RUN apt-get update && \ | |
apt-get install -y --no-install-recommends \ | |
gcc git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 libsm6 \ | |
&& rm -rf /var/lib/apt/lists/* | |
# Security updates | |
# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796 | |
RUN apt upgrade --no-install-recommends -y openssl tar | |
# Create working directory | |
WORKDIR /ultralytics | |
# Copy contents and configure git | |
COPY . . | |
RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config | |
ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt . | |
# Install pip packages | |
RUN python3 -m pip install --upgrade pip wheel | |
# Pin TensorRT-cu12==10.1.0 to avoid 10.2.0 bug https://github.com/ultralytics/ultralytics/pull/14239 (note -cu12 must be used) | |
RUN pip install -e ".[export]" "tensorrt-cu12==10.1.0" "albumentations>=1.4.6" comet pycocotools | |
# Run exports to AutoInstall packages | |
# Edge TPU export fails the first time so is run twice here | |
RUN yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32 || yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32 | |
RUN yolo export model=tmp/yolo11n.pt format=ncnn imgsz=32 | |
# Requires <= Python 3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991 | |
RUN pip install "paddlepaddle>=2.6.0" x2paddle | |
# Fix error: `np.bool` was a deprecated alias for the builtin `bool` segmentation error in Tests | |
RUN pip install numpy==1.23.5 | |
# Remove extra build files | |
RUN rm -rf tmp /root/.config/Ultralytics/persistent_cache.json | |
# Usage Examples ------------------------------------------------------------------------------------------------------- | |
# Build and Push | |
# t=ultralytics/ultralytics:latest && sudo docker build -f docker/Dockerfile -t $t . && sudo docker push $t | |
# Pull and Run with access to all GPUs | |
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t | |
# Pull and Run with access to GPUs 2 and 3 (inside container CUDA devices will appear as 0 and 1) | |
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus '"device=2,3"' $t | |
# Pull and Run with local directory access | |
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/shared/datasets:/datasets $t | |
# Kill all | |
# sudo docker kill $(sudo docker ps -q) | |
# Kill all image-based | |
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/ultralytics:latest) | |
# DockerHub tag update | |
# t=ultralytics/ultralytics:latest tnew=ultralytics/ultralytics:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew | |
# Clean up | |
# sudo docker system prune -a --volumes | |
# Update Ubuntu drivers | |
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ | |
# DDP test | |
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 | |
# GCP VM from Image | |
# docker.io/ultralytics/ultralytics:latest | |