|
#include "inference.h"
|
|
|
|
#include <memory>
|
|
#include <opencv2/dnn.hpp>
|
|
#include <random>
|
|
|
|
namespace yolo {
|
|
|
|
|
|
Inference::Inference(const std::string &model_path, const float &model_confidence_threshold, const float &model_NMS_threshold) {
|
|
model_input_shape_ = cv::Size(640, 640);
|
|
model_confidence_threshold_ = model_confidence_threshold;
|
|
model_NMS_threshold_ = model_NMS_threshold;
|
|
InitializeModel(model_path);
|
|
}
|
|
|
|
|
|
Inference::Inference(const std::string &model_path, const cv::Size model_input_shape, const float &model_confidence_threshold, const float &model_NMS_threshold) {
|
|
model_input_shape_ = model_input_shape;
|
|
model_confidence_threshold_ = model_confidence_threshold;
|
|
model_NMS_threshold_ = model_NMS_threshold;
|
|
InitializeModel(model_path);
|
|
}
|
|
|
|
void Inference::InitializeModel(const std::string &model_path) {
|
|
ov::Core core;
|
|
std::shared_ptr<ov::Model> model = core.read_model(model_path);
|
|
|
|
|
|
if (model->is_dynamic()) {
|
|
model->reshape({1, 3, static_cast<long int>(model_input_shape_.height), static_cast<long int>(model_input_shape_.width)});
|
|
}
|
|
|
|
|
|
ov::preprocess::PrePostProcessor ppp = ov::preprocess::PrePostProcessor(model);
|
|
ppp.input().tensor().set_element_type(ov::element::u8).set_layout("NHWC").set_color_format(ov::preprocess::ColorFormat::BGR);
|
|
ppp.input().preprocess().convert_element_type(ov::element::f32).convert_color(ov::preprocess::ColorFormat::RGB).scale({255, 255, 255});
|
|
ppp.input().model().set_layout("NCHW");
|
|
ppp.output().tensor().set_element_type(ov::element::f32);
|
|
model = ppp.build();
|
|
|
|
|
|
compiled_model_ = core.compile_model(model, "AUTO");
|
|
inference_request_ = compiled_model_.create_infer_request();
|
|
|
|
short width, height;
|
|
|
|
|
|
const std::vector<ov::Output<ov::Node>> inputs = model->inputs();
|
|
const ov::Shape input_shape = inputs[0].get_shape();
|
|
height = input_shape[1];
|
|
width = input_shape[2];
|
|
model_input_shape_ = cv::Size2f(width, height);
|
|
|
|
|
|
const std::vector<ov::Output<ov::Node>> outputs = model->outputs();
|
|
const ov::Shape output_shape = outputs[0].get_shape();
|
|
height = output_shape[1];
|
|
width = output_shape[2];
|
|
model_output_shape_ = cv::Size(width, height);
|
|
}
|
|
|
|
|
|
void Inference::RunInference(cv::Mat &frame) {
|
|
Preprocessing(frame);
|
|
inference_request_.infer();
|
|
PostProcessing(frame);
|
|
}
|
|
|
|
|
|
void Inference::Preprocessing(const cv::Mat &frame) {
|
|
cv::Mat resized_frame;
|
|
cv::resize(frame, resized_frame, model_input_shape_, 0, 0, cv::INTER_AREA);
|
|
|
|
|
|
scale_factor_.x = static_cast<float>(frame.cols / model_input_shape_.width);
|
|
scale_factor_.y = static_cast<float>(frame.rows / model_input_shape_.height);
|
|
|
|
float *input_data = (float *)resized_frame.data;
|
|
const ov::Tensor input_tensor = ov::Tensor(compiled_model_.input().get_element_type(), compiled_model_.input().get_shape(), input_data);
|
|
inference_request_.set_input_tensor(input_tensor);
|
|
}
|
|
|
|
|
|
void Inference::PostProcessing(cv::Mat &frame) {
|
|
std::vector<int> class_list;
|
|
std::vector<float> confidence_list;
|
|
std::vector<cv::Rect> box_list;
|
|
|
|
|
|
const float *detections = inference_request_.get_output_tensor().data<const float>();
|
|
const cv::Mat detection_outputs(model_output_shape_, CV_32F, (float *)detections);
|
|
|
|
|
|
for (int i = 0; i < detection_outputs.cols; ++i) {
|
|
const cv::Mat classes_scores = detection_outputs.col(i).rowRange(4, detection_outputs.rows);
|
|
|
|
cv::Point class_id;
|
|
double score;
|
|
cv::minMaxLoc(classes_scores, nullptr, &score, nullptr, &class_id);
|
|
|
|
|
|
if (score > model_confidence_threshold_) {
|
|
class_list.push_back(class_id.y);
|
|
confidence_list.push_back(score);
|
|
|
|
const float x = detection_outputs.at<float>(0, i);
|
|
const float y = detection_outputs.at<float>(1, i);
|
|
const float w = detection_outputs.at<float>(2, i);
|
|
const float h = detection_outputs.at<float>(3, i);
|
|
|
|
cv::Rect box;
|
|
box.x = static_cast<int>(x);
|
|
box.y = static_cast<int>(y);
|
|
box.width = static_cast<int>(w);
|
|
box.height = static_cast<int>(h);
|
|
box_list.push_back(box);
|
|
}
|
|
}
|
|
|
|
|
|
std::vector<int> NMS_result;
|
|
cv::dnn::NMSBoxes(box_list, confidence_list, model_confidence_threshold_, model_NMS_threshold_, NMS_result);
|
|
|
|
|
|
for (int i = 0; i < NMS_result.size(); ++i) {
|
|
Detection result;
|
|
const unsigned short id = NMS_result[i];
|
|
|
|
result.class_id = class_list[id];
|
|
result.confidence = confidence_list[id];
|
|
result.box = GetBoundingBox(box_list[id]);
|
|
|
|
DrawDetectedObject(frame, result);
|
|
}
|
|
}
|
|
|
|
|
|
cv::Rect Inference::GetBoundingBox(const cv::Rect &src) const {
|
|
cv::Rect box = src;
|
|
box.x = (box.x - box.width / 2) * scale_factor_.x;
|
|
box.y = (box.y - box.height / 2) * scale_factor_.y;
|
|
box.width *= scale_factor_.x;
|
|
box.height *= scale_factor_.y;
|
|
return box;
|
|
}
|
|
|
|
void Inference::DrawDetectedObject(cv::Mat &frame, const Detection &detection) const {
|
|
const cv::Rect &box = detection.box;
|
|
const float &confidence = detection.confidence;
|
|
const int &class_id = detection.class_id;
|
|
|
|
|
|
std::random_device rd;
|
|
std::mt19937 gen(rd());
|
|
std::uniform_int_distribution<int> dis(120, 255);
|
|
const cv::Scalar &color = cv::Scalar(dis(gen), dis(gen), dis(gen));
|
|
|
|
|
|
cv::rectangle(frame, cv::Point(box.x, box.y), cv::Point(box.x + box.width, box.y + box.height), color, 3);
|
|
|
|
|
|
std::string classString = classes_[class_id] + std::to_string(confidence).substr(0, 4);
|
|
|
|
|
|
cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 0.75, 2, 0);
|
|
cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
|
|
|
|
|
|
cv::rectangle(frame, textBox, color, cv::FILLED);
|
|
|
|
|
|
cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 0.75, cv::Scalar(0, 0, 0), 2, 0);
|
|
}
|
|
}
|
|
|