Upload 8 files
Browse files- README.md +99 -0
- config.json +82 -0
- model.safetensors +3 -0
- preprocessor_config.json +12 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +4 -0
- vocab.json +97 -0
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
tags:
|
5 |
+
- mms
|
6 |
+
- vits
|
7 |
+
pipeline_tag: text-to-speech
|
8 |
+
---
|
9 |
+
|
10 |
+
# Massively Multilingual Speech (MMS): Vietnamese Text-to-Speech
|
11 |
+
|
12 |
+
This repository contains the **Vietnamese (vie)** language text-to-speech (TTS) model checkpoint.
|
13 |
+
|
14 |
+
This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to
|
15 |
+
provide speech technology across a diverse range of languages. You can find more details about the supported languages
|
16 |
+
and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
|
17 |
+
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
|
18 |
+
|
19 |
+
MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards.
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
|
23 |
+
VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end
|
24 |
+
speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational
|
25 |
+
autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior.
|
26 |
+
|
27 |
+
A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based
|
28 |
+
text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers,
|
29 |
+
much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text
|
30 |
+
input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to
|
31 |
+
synthesise speech with different rhythms from the same input text.
|
32 |
+
|
33 |
+
The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training.
|
34 |
+
To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During
|
35 |
+
inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the
|
36 |
+
waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor,
|
37 |
+
the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform.
|
38 |
+
|
39 |
+
For the MMS project, a separate VITS checkpoint is trained on each langauge.
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint,
|
44 |
+
first install the latest version of the library:
|
45 |
+
|
46 |
+
```
|
47 |
+
pip install --upgrade transformers accelerate
|
48 |
+
```
|
49 |
+
|
50 |
+
Then, run inference with the following code-snippet:
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import VitsModel, AutoTokenizer
|
54 |
+
import torch
|
55 |
+
|
56 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-vie")
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-vie")
|
58 |
+
|
59 |
+
text = "some example text in the Vietnamese language"
|
60 |
+
inputs = tokenizer(text, return_tensors="pt")
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
output = model(**inputs).waveform
|
64 |
+
```
|
65 |
+
|
66 |
+
The resulting waveform can be saved as a `.wav` file:
|
67 |
+
|
68 |
+
```python
|
69 |
+
import scipy
|
70 |
+
|
71 |
+
scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output)
|
72 |
+
```
|
73 |
+
|
74 |
+
Or displayed in a Jupyter Notebook / Google Colab:
|
75 |
+
|
76 |
+
```python
|
77 |
+
from IPython.display import Audio
|
78 |
+
|
79 |
+
Audio(output, rate=model.config.sampling_rate)
|
80 |
+
```
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
## BibTex citation
|
85 |
+
|
86 |
+
This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper:
|
87 |
+
|
88 |
+
```
|
89 |
+
@article{pratap2023mms,
|
90 |
+
title={Scaling Speech Technology to 1,000+ Languages},
|
91 |
+
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
|
92 |
+
journal={arXiv},
|
93 |
+
year={2023}
|
94 |
+
}
|
95 |
+
```
|
96 |
+
|
97 |
+
## License
|
98 |
+
|
99 |
+
The model is licensed as **CC-BY-NC 4.0**.
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.1,
|
3 |
+
"architectures": [
|
4 |
+
"VitsModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"depth_separable_channels": 2,
|
8 |
+
"depth_separable_num_layers": 3,
|
9 |
+
"duration_predictor_dropout": 0.5,
|
10 |
+
"duration_predictor_filter_channels": 256,
|
11 |
+
"duration_predictor_flow_bins": 10,
|
12 |
+
"duration_predictor_kernel_size": 3,
|
13 |
+
"duration_predictor_num_flows": 4,
|
14 |
+
"duration_predictor_tail_bound": 5.0,
|
15 |
+
"ffn_dim": 768,
|
16 |
+
"ffn_kernel_size": 3,
|
17 |
+
"flow_size": 192,
|
18 |
+
"hidden_act": "relu",
|
19 |
+
"hidden_dropout": 0.1,
|
20 |
+
"hidden_size": 192,
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"layer_norm_eps": 1e-05,
|
23 |
+
"layerdrop": 0.1,
|
24 |
+
"leaky_relu_slope": 0.1,
|
25 |
+
"model_type": "vits",
|
26 |
+
"noise_scale": 0.667,
|
27 |
+
"noise_scale_duration": 0.8,
|
28 |
+
"num_attention_heads": 2,
|
29 |
+
"num_hidden_layers": 6,
|
30 |
+
"num_speakers": 1,
|
31 |
+
"posterior_encoder_num_wavenet_layers": 16,
|
32 |
+
"prior_encoder_num_flows": 4,
|
33 |
+
"prior_encoder_num_wavenet_layers": 4,
|
34 |
+
"resblock_dilation_sizes": [
|
35 |
+
[
|
36 |
+
1,
|
37 |
+
3,
|
38 |
+
5
|
39 |
+
],
|
40 |
+
[
|
41 |
+
1,
|
42 |
+
3,
|
43 |
+
5
|
44 |
+
],
|
45 |
+
[
|
46 |
+
1,
|
47 |
+
3,
|
48 |
+
5
|
49 |
+
]
|
50 |
+
],
|
51 |
+
"resblock_kernel_sizes": [
|
52 |
+
3,
|
53 |
+
7,
|
54 |
+
11
|
55 |
+
],
|
56 |
+
"sampling_rate": 16000,
|
57 |
+
"speaker_embedding_size": 0,
|
58 |
+
"speaking_rate": 1.0,
|
59 |
+
"spectrogram_bins": 513,
|
60 |
+
"torch_dtype": "float32",
|
61 |
+
"transformers_version": "4.33.0.dev0",
|
62 |
+
"upsample_initial_channel": 512,
|
63 |
+
"upsample_kernel_sizes": [
|
64 |
+
16,
|
65 |
+
16,
|
66 |
+
4,
|
67 |
+
4
|
68 |
+
],
|
69 |
+
"upsample_rates": [
|
70 |
+
8,
|
71 |
+
8,
|
72 |
+
2,
|
73 |
+
2
|
74 |
+
],
|
75 |
+
"use_bias": true,
|
76 |
+
"use_stochastic_duration_prediction": true,
|
77 |
+
"vocab_size": 95,
|
78 |
+
"wavenet_dilation_rate": 1,
|
79 |
+
"wavenet_dropout": 0.0,
|
80 |
+
"wavenet_kernel_size": 5,
|
81 |
+
"window_size": 4
|
82 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55ded90c3e57dc2814fa2cdfe3f9e7a5c28e1223b06c0a260a4495b080762ffd
|
3 |
+
size 145271288
|
preprocessor_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_blank": true,
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"is_uroman": false,
|
5 |
+
"language": "vie",
|
6 |
+
"model_max_length": 1000000000000000019884624838656,
|
7 |
+
"normalize": true,
|
8 |
+
"pad_token": "ụ",
|
9 |
+
"phonemize": false,
|
10 |
+
"tokenizer_class": "VitsTokenizer",
|
11 |
+
"unk_token": "<unk>"
|
12 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aab7d240fb0b6c83474a15affcb70194742af8dbbf79083deb6684e162ff0cb5
|
3 |
+
size 145432498
|
special_tokens_map.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "ụ",
|
3 |
+
"unk_token": "<unk>"
|
4 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
" ": 84,
|
3 |
+
"'": 44,
|
4 |
+
"-": 94,
|
5 |
+
"2": 52,
|
6 |
+
"_": 17,
|
7 |
+
"a": 29,
|
8 |
+
"b": 88,
|
9 |
+
"c": 13,
|
10 |
+
"d": 63,
|
11 |
+
"e": 54,
|
12 |
+
"g": 21,
|
13 |
+
"h": 85,
|
14 |
+
"i": 30,
|
15 |
+
"k": 79,
|
16 |
+
"l": 82,
|
17 |
+
"m": 68,
|
18 |
+
"n": 90,
|
19 |
+
"o": 31,
|
20 |
+
"p": 78,
|
21 |
+
"q": 47,
|
22 |
+
"r": 92,
|
23 |
+
"s": 2,
|
24 |
+
"t": 80,
|
25 |
+
"u": 8,
|
26 |
+
"v": 14,
|
27 |
+
"x": 1,
|
28 |
+
"y": 75,
|
29 |
+
"à": 35,
|
30 |
+
"á": 77,
|
31 |
+
"â": 12,
|
32 |
+
"ã": 51,
|
33 |
+
"è": 3,
|
34 |
+
"é": 58,
|
35 |
+
"ê": 91,
|
36 |
+
"ì": 4,
|
37 |
+
"í": 74,
|
38 |
+
"ò": 45,
|
39 |
+
"ó": 56,
|
40 |
+
"ô": 28,
|
41 |
+
"õ": 25,
|
42 |
+
"ù": 38,
|
43 |
+
"ú": 76,
|
44 |
+
"ý": 37,
|
45 |
+
"ă": 89,
|
46 |
+
"đ": 55,
|
47 |
+
"ĩ": 23,
|
48 |
+
"ũ": 70,
|
49 |
+
"ơ": 7,
|
50 |
+
"ư": 9,
|
51 |
+
"ạ": 22,
|
52 |
+
"ả": 24,
|
53 |
+
"ấ": 81,
|
54 |
+
"ầ": 57,
|
55 |
+
"ẩ": 49,
|
56 |
+
"ẫ": 67,
|
57 |
+
"ậ": 87,
|
58 |
+
"ắ": 65,
|
59 |
+
"ằ": 10,
|
60 |
+
"ẳ": 27,
|
61 |
+
"ẵ": 42,
|
62 |
+
"ặ": 5,
|
63 |
+
"ẹ": 72,
|
64 |
+
"ẻ": 20,
|
65 |
+
"ẽ": 66,
|
66 |
+
"ế": 60,
|
67 |
+
"ề": 40,
|
68 |
+
"ể": 69,
|
69 |
+
"ễ": 41,
|
70 |
+
"ệ": 15,
|
71 |
+
"ỉ": 71,
|
72 |
+
"ị": 53,
|
73 |
+
"ọ": 48,
|
74 |
+
"ỏ": 43,
|
75 |
+
"ố": 46,
|
76 |
+
"ồ": 16,
|
77 |
+
"ổ": 34,
|
78 |
+
"ỗ": 73,
|
79 |
+
"ộ": 19,
|
80 |
+
"ớ": 59,
|
81 |
+
"ờ": 36,
|
82 |
+
"ở": 83,
|
83 |
+
"ỡ": 26,
|
84 |
+
"ợ": 93,
|
85 |
+
"ụ": 0,
|
86 |
+
"ủ": 61,
|
87 |
+
"ứ": 6,
|
88 |
+
"ừ": 32,
|
89 |
+
"ử": 62,
|
90 |
+
"ữ": 64,
|
91 |
+
"ự": 50,
|
92 |
+
"ỳ": 11,
|
93 |
+
"ỵ": 18,
|
94 |
+
"ỷ": 86,
|
95 |
+
"ỹ": 33,
|
96 |
+
"–": 39
|
97 |
+
}
|