--- language: ja license: cc-by-nc-sa-4.0 tags: - roberta - medical mask_token: "[MASK]" widget: - text: "この患者は[MASK]と診断された。" --- # alabnii/jmedroberta-base-sentencepiece ## Model description This is a Japanese RoBERTa base model pre-trained on academic articles in medical sciences collected by Japan Science and Technology Agency (JST). This model is released under the [Creative Commons 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/deed) (CC BY-NC-SA 4.0). ## Datasets used for pre-training - abstracts (train: 1.6GB (10M sentences), validation: 0.2GB (1.3M sentences)) - abstracts & body texts (train: 0.2GB (1.4M sentences)) ## How to use **Input text must be converted to full-width characters(全角)in advance.** You can use this model for masked language modeling as follows: ```python from transformers import AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("alabnii/jmedroberta-base-sentencepiece") model.eval() tokenizer = AutoTokenizer.from_pretrained("alabnii/jmedroberta-base-sentencepiece") texts = ['この患者は[MASK]と診断された。'] inputs = tokenizer.batch_encode_plus(texts, return_tensors='pt') outputs = model(**inputs) tokenizer.convert_ids_to_tokens(outputs.logits[0][1:-1].argmax(axis=-1)) # ['▁この', '患者は', 'AML', '▁', 'と診断された', '。'] ``` Alternatively, you can employ [Fill-mask pipeline](https://huggingface.co/tasks/fill-mask). ```python from transformers import pipeline fill = pipeline("fill-mask", model="alabnii/jmedroberta-base-sentencepiece", top_k=10) fill("この患者は[MASK]と診断された。") #[{'score': 0.04239409416913986, # 'token': 7698, # 'token_str': 'AML', # 'sequence': 'この患者はAML と診断された。'}, # {'score': 0.03562006726861, # 'token': 3298, # 'token_str': 'SLE', # 'sequence': 'この患者はSLE と診断された。'}, # {'score': 0.025064188987016678, # 'token': 10303, # 'token_str': 'MDS', # 'sequence': 'この患者はMDS と診断された。'}, # ... ``` You can fine-tune this model on downstream tasks. **See also sample Colab notebooks:** https://colab.research.google.com/drive/1BUD3DKOUMqcwIO3X5bYUOsR_wDzgOJcd?usp=sharing ## Tokenization Each sentence is tokenized into tokens by [SentencePiece (Unigram)](https://huggingface.co/course/chapter6/7). ## Vocabulary The vocabulary consists of 30000 tokens induced by [SentencePiece (Unigram)](https://huggingface.co/course/chapter6/7). ## Training procedure The following hyperparameters were used during pre-training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20000 - training_steps: 2000000 - mixed_precision_training: Native AMP ## Note: Why do we call our model RoBERTa, not BERT? As the config file suggests, our model is based on HuggingFace's `BertForMaskedLM` class. However, we consider our model as **RoBERTa** for the following reasons: - We kept training only with max sequence length (= 512) tokens. - We removed the next sentence prediction (NSP) training objective. - We introduced dynamic masking (changing the masking pattern in each training iteration). ## Acknowledgements This work was supported by Japan Japan Science and Technology Agency (JST) AIP Trilateral AI Research (Grant Number: JPMJCR20G9), and Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) (Project ID: jh221004), in Japan. In this research work, we used the "[mdx: a platform for the data-driven future](https://mdx.jp/)".