Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: bert-base-cased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
- wer
|
13 |
+
model-index:
|
14 |
+
- name: bert-finetuned-ner-tokenizer
|
15 |
+
results: []
|
16 |
+
---
|
17 |
+
|
18 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
19 |
+
should probably proofread and complete it, then remove this comment. -->
|
20 |
+
|
21 |
+
# bert-finetuned-ner-tokenizer
|
22 |
+
|
23 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
|
24 |
+
It achieves the following results on the evaluation set:
|
25 |
+
- Loss: 0.0280
|
26 |
+
- Precision: 0.7896
|
27 |
+
- Recall: 0.8536
|
28 |
+
- F1: 0.8203
|
29 |
+
- Accuracy: 0.9919
|
30 |
+
- Wer: 0.0079
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 2e-05
|
50 |
+
- train_batch_size: 16
|
51 |
+
- eval_batch_size: 16
|
52 |
+
- seed: 42
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 4
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Wer |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|
|
61 |
+
| 0.0515 | 1.0 | 768 | 0.0273 | 0.7510 | 0.8495 | 0.7972 | 0.9907 | 0.0089 |
|
62 |
+
| 0.0192 | 2.0 | 1536 | 0.0259 | 0.7567 | 0.8627 | 0.8062 | 0.9911 | 0.0086 |
|
63 |
+
| 0.0158 | 3.0 | 2304 | 0.0259 | 0.7828 | 0.8565 | 0.8180 | 0.9916 | 0.0082 |
|
64 |
+
| 0.0111 | 4.0 | 3072 | 0.0280 | 0.7896 | 0.8536 | 0.8203 | 0.9919 | 0.0079 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.44.2
|
70 |
+
- Pytorch 2.4.1+cu121
|
71 |
+
- Datasets 2.21.0
|
72 |
+
- Tokenizers 0.19.1
|