alban12 commited on
Commit
1e03122
1 Parent(s): 0828685

Training complete

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: bert-base-cased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ - wer
13
+ model-index:
14
+ - name: bert-finetuned-ner-tokenizer
15
+ results: []
16
+ ---
17
+
18
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
19
+ should probably proofread and complete it, then remove this comment. -->
20
+
21
+ # bert-finetuned-ner-tokenizer
22
+
23
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
24
+ It achieves the following results on the evaluation set:
25
+ - Loss: 0.0280
26
+ - Precision: 0.7896
27
+ - Recall: 0.8536
28
+ - F1: 0.8203
29
+ - Accuracy: 0.9919
30
+ - Wer: 0.0079
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 2e-05
50
+ - train_batch_size: 16
51
+ - eval_batch_size: 16
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 4
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Wer |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|
61
+ | 0.0515 | 1.0 | 768 | 0.0273 | 0.7510 | 0.8495 | 0.7972 | 0.9907 | 0.0089 |
62
+ | 0.0192 | 2.0 | 1536 | 0.0259 | 0.7567 | 0.8627 | 0.8062 | 0.9911 | 0.0086 |
63
+ | 0.0158 | 3.0 | 2304 | 0.0259 | 0.7828 | 0.8565 | 0.8180 | 0.9916 | 0.0082 |
64
+ | 0.0111 | 4.0 | 3072 | 0.0280 | 0.7896 | 0.8536 | 0.8203 | 0.9919 | 0.0079 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.44.2
70
+ - Pytorch 2.4.1+cu121
71
+ - Datasets 2.21.0
72
+ - Tokenizers 0.19.1