--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy - wer model-index: - name: bert-finetuned-ner-tokenizer results: [] --- # bert-finetuned-ner-tokenizer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0280 - Precision: 0.7896 - Recall: 0.8536 - F1: 0.8203 - Accuracy: 0.9919 - Wer: 0.0079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:| | 0.0515 | 1.0 | 768 | 0.0273 | 0.7510 | 0.8495 | 0.7972 | 0.9907 | 0.0089 | | 0.0192 | 2.0 | 1536 | 0.0259 | 0.7567 | 0.8627 | 0.8062 | 0.9911 | 0.0086 | | 0.0158 | 3.0 | 2304 | 0.0259 | 0.7828 | 0.8565 | 0.8180 | 0.9916 | 0.0082 | | 0.0111 | 4.0 | 3072 | 0.0280 | 0.7896 | 0.8536 | 0.8203 | 0.9919 | 0.0079 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1