File size: 6,116 Bytes
14bdaac f776820 b58b4d0 14bdaac 51c08b2 8f97753 14bdaac c4df438 14bdaac d7d8ba8 39bafa4 3d373f7 39bafa4 d7d8ba8 c4df438 14bdaac 965b8d7 14bdaac d7d8ba8 965b8d7 14bdaac c4df438 14bdaac b58b4d0 f776820 b58b4d0 36f1fca b58b4d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
tags:
- merge
license: other
model-index:
- name: BoreanGale-70B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.37
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 68.6
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.53
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
name: Open LLM Leaderboard
---
<img src=https://huggingface.co/alchemonaut/BoreanGale-70B/resolve/main/bg.png>
# BoreanGale-70B
A merge using a custom algorithm (NearSwap) of:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2)
<br/>
<br/>
# Quants
Several quants are available thanks to community efforts.
| Type | Misc | Author |
| ----- | ----- | ----- |
| [GGUF](https://huggingface.co/Nexesenex/alchemonaut_BoreanGale-70B-iMat.GGUF) | iMat Q3 | Nexesenex |
| [GGUF](https://huggingface.co/mradermacher/BoreanGale-70B-i1-GGUF) | iMat | mradermacher |
| [GGUF](https://huggingface.co/mradermacher/BoreanGale-70B-GGUF) | Full Set | mradermacher |
| [GGUF](https://huggingface.co/LoneStriker/BoreanGale-70B-GGUF) | Misc | LoneStriker |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-2.4bpw-h6-exl2) | 2.4 bpw | LoneStriker |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-3.5bpw-h6-exl2) | 3.5 bpw | LoneStriker |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-4.0bpw-h6-exl2) | 4.0 bpw | LoneStriker |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-4.65bpw-h6-exl2) | 4.65 bpw | LoneStriker |
# NearSwap Algorithm
NearSwap retains most of the weights of the base model (Miqu), but when a weight is similar between the two, it is interpolated to the secondary model (WinterGoddess) value. A parameter *t* specifies the sameness threshold. When the distance between two values is below *t*, the weight from the secondary model (WinterGoddess) is used.
This version of the model uses *t* = 0.001. At this *t*, about 10% of weights are fully switched to WinterGoddess. Model quality rapidly degrades above *t* = 0.0025:
- *t* = 0.0001 (~0.8% full swap): [QuartetAnemoi-70B-t0.0001](https://huggingface.co/alchemonaut/QuartetAnemoi-70B-t0.0001)
- *t* = 0.0003 (~2% full swap)
- *t* = 0.001 (~10% full swap): This model
- *t* = 0.0025 (~18% full swap): Generates one paragraph okay, but then reverts to garbage
- *t* = 0.005 (~35% full swap): Garbage; semi-related word lists
- *t* = 0.01 (~55% full swap): Garbage; pseudorandom tokens output
NearSwap implementation:
```
t: Union[float, np.ndarray],
v0: Union[np.ndarray, torch.Tensor],
v1: Union[np.ndarray, torch.Tensor],
...
lweight = numpy.absolute(v0-v1)
lweight = t / lweight
lweight = numpy.nan_to_num(lweight, nan=1.0, posinf=1.0, neginf=1.0)
numpy.clip(lweight, a_min=0.0, a_max=1.0, out=lweight)
res = lerp(lweight,v0,v1)
```
<br/>
<br/>
# License and Use
Since the ultimate origin of Miqu is at this time unknown beyond speculation, this model is for noncommercial research use only.
<br/>
<br/>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alchemonaut__BoreanGale-70B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.48|
|AI2 Reasoning Challenge (25-Shot)|73.89|
|HellaSwag (10-Shot) |89.37|
|MMLU (5-Shot) |75.19|
|TruthfulQA (0-shot) |68.6|
|Winogrande (5-shot) |84.53|
|GSM8k (5-shot) |67.32|
|