File size: 6,116 Bytes
14bdaac
 
 
f776820
b58b4d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14bdaac
51c08b2
8f97753
 
14bdaac
 
c4df438
14bdaac
 
 
d7d8ba8
 
 
39bafa4
 
 
 
 
 
 
3d373f7
 
 
 
 
 
 
39bafa4
 
d7d8ba8
 
c4df438
14bdaac
965b8d7
14bdaac
d7d8ba8
965b8d7
 
 
 
 
14bdaac
c4df438
14bdaac
 
 
 
 
 
 
 
 
 
 
b58b4d0
 
 
f776820
 
 
b58b4d0
 
 
 
 
 
36f1fca
b58b4d0
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
tags:
- merge
license: other
model-index:
- name: BoreanGale-70B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 73.89
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 89.37
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.19
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 68.6
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 67.32
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B
      name: Open LLM Leaderboard
---

<img src=https://huggingface.co/alchemonaut/BoreanGale-70B/resolve/main/bg.png>

# BoreanGale-70B

A merge using a custom algorithm (NearSwap) of:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2)

<br/>
<br/>

# Quants
Several quants are available thanks to community efforts.

| Type  | Misc   | Author        |
| ----- | -----  | -----         |
| [GGUF](https://huggingface.co/Nexesenex/alchemonaut_BoreanGale-70B-iMat.GGUF)  | iMat Q3  | Nexesenex      |
| [GGUF](https://huggingface.co/mradermacher/BoreanGale-70B-i1-GGUF)  | iMat   | mradermacher     |
| [GGUF](https://huggingface.co/mradermacher/BoreanGale-70B-GGUF)  | Full Set | mradermacher     |
| [GGUF](https://huggingface.co/LoneStriker/BoreanGale-70B-GGUF)  | Misc | LoneStriker     |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-2.4bpw-h6-exl2)  | 2.4 bpw | LoneStriker     |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-3.5bpw-h6-exl2)  | 3.5 bpw | LoneStriker     |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-4.0bpw-h6-exl2)  | 4.0 bpw | LoneStriker     |
| [exl2](https://huggingface.co/LoneStriker/BoreanGale-70B-4.65bpw-h6-exl2)  | 4.65 bpw | LoneStriker     |



# NearSwap Algorithm

NearSwap retains most of the weights of the base model (Miqu), but when a weight is similar between the two, it is interpolated to the secondary model (WinterGoddess) value. A parameter *t* specifies the sameness threshold. When the distance between two values is below *t*, the weight from the secondary model (WinterGoddess) is used.

This version of the model uses *t* = 0.001. At this *t*, about 10% of weights are fully switched to WinterGoddess. Model quality rapidly degrades above *t* = 0.0025:

- *t* = 0.0001 (~0.8% full swap): [QuartetAnemoi-70B-t0.0001](https://huggingface.co/alchemonaut/QuartetAnemoi-70B-t0.0001)
- *t* = 0.0003 (~2%  full swap)
- *t* = 0.001  (~10% full swap): This model
- *t* = 0.0025 (~18% full swap): Generates one paragraph okay, but then reverts to garbage
- *t* = 0.005  (~35% full swap): Garbage; semi-related word lists
- *t* = 0.01   (~55% full swap): Garbage; pseudorandom tokens output

NearSwap implementation:
```
    t: Union[float, np.ndarray],
    v0: Union[np.ndarray, torch.Tensor],
    v1: Union[np.ndarray, torch.Tensor],
...
    lweight = numpy.absolute(v0-v1)
    lweight = t / lweight
    lweight = numpy.nan_to_num(lweight, nan=1.0, posinf=1.0, neginf=1.0)
    numpy.clip(lweight, a_min=0.0, a_max=1.0, out=lweight)
    res = lerp(lweight,v0,v1)
```
<br/>
<br/>


# License and Use

Since the ultimate origin of Miqu is at this time unknown beyond speculation, this model is for noncommercial research use only.

<br/>
<br/>

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alchemonaut__BoreanGale-70B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |76.48|
|AI2 Reasoning Challenge (25-Shot)|73.89|
|HellaSwag (10-Shot)              |89.37|
|MMLU (5-Shot)                    |75.19|
|TruthfulQA (0-shot)              |68.6|
|Winogrande (5-shot)              |84.53|
|GSM8k (5-shot)                   |67.32|