File size: 3,653 Bytes
ff7ea82 1cf989b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: creativeml-openrail-m
---
This is the beta version of the yama-no-susume character model (ヤマノススメ, aka encouragement of climb in English).
Unlike most of the models out there, this model is capable of generating **multi-character scenes** beyond images of a single character.
Of course, the result is still hit-or-miss, but it is possible to get **as many as 5 characters** right in one shot, and otherwise, you can always rely on inpainting.
Here are two examples (the first one done with some inpainting):
_Coming soon_
### Dataset description
The dataset contains around 40K images with the following composition
- 11424 anime screenshots from the four seasons of the anime
- 726 fan arts
- ~30K customized regularization images
The model is trained with a specific weighting scheme to balance between different concepts.
For example, the above three categories have weights respectively 0.3, 0.2, and 0.5.
Each category is itself split into many sub-categories in a hierarchical way.
For more detail on the data preparation process please refer to https://github.com/cyber-meow/anime_screenshot_pipeline
### Training Details
#### Trainer
The model was trained using [EveryDream1](https://github.com/victorchall/EveryDream-trainer) as
EveryDream seems to be the only trainer out there that supports sample weighting (through the use of `multiply.txt`).
Note that for future training it makes sense to migrate to [EveryDream2](https://github.com/victorchall/EveryDream2trainer).
#### Hardware and cost
The model was trained on runpod with an A6000 and cost me around 80 dollors.
However, I estimate a model of similar quality can be trained with fewer than 20 dollars on runpod.
#### Hyperparameter specification
- The model was first trained for 18000 steps, at batch size 8, lr 1e-6, resolution 640, and conditional dropping rate of 15%.
- After this, I modified a little the captions and trained the model for another 22000 steps, at batch size 8, lr 1e-6, reslution 704, and conditional dropping rate of 15%.
Note that as a consequence of the weighting scheme which translates into a number of different multiply for each image,
the count of repeat and epoch has a quite different meaning here.
For example, depending on the weighting, I have 400K~600K images (some images are used multiple times) in an epoch,
and therefore I did not even finish an entire epoch with the 40000 steps at batch size 8.
### Failures
I tried several things in this model (this is why I trained for so long), but I failed most of them.
- I put the number of people at the beginning of the captions, but at the end of 40000 steps the model still cannot count
(it can generate like 3~5 people when we prompt 3people).
- I use some tokens to describe the face position within a 5x5 grid but the model did not learn anything about these tokens.
I think this is either due to 1) face position being too abstract to learn, 2) data imbalance as I did not balance my training for this, or 3) captions not enough focused on these concepts (it is much longer and contains other information).
- As mentioned, the model can generate multi-character scenes but the success rate becomes lower and lower as we increase the number of character in the scene.
Character bleeding is always a hard problem to solve.
- The model is trained with 5% weight for hand images, but I doubt it helps in any kind.
Actually, I have a doubt whether the last 22000 steps really improved the models.
This is how I get my 20$ estimate taking into account that we can simply train at resolution 512 on 3090 with ED2.
### More Example Generations
_coming soon_ |