File size: 6,957 Bytes
96b8fbe 86366c6 96b8fbe 86366c6 96b8fbe 0a5d4dc 96b8fbe e8e9953 96b8fbe bb96b52 e5d0d0a 7a28165 e5d0d0a bb96b52 e5d0d0a bb96b52 e5d0d0a bb96b52 e5d0d0a bb96b52 e5d0d0a bb96b52 e5d0d0a bb96b52 c0fab16 e5d0d0a 7a28165 e5d0d0a 7a28165 e5d0d0a bb96b52 7a28165 e5d0d0a 7a28165 c0fab16 7a28165 c0fab16 7a28165 e5d0d0a 7a28165 c0fab16 bb96b52 e5d0d0a 7a28165 e5d0d0a 7a28165 e5d0d0a 7a28165 e5d0d0a 7a28165 bb96b52 7a28165 bb96b52 7a28165 bb96b52 7a28165 bb96b52 7a28165 bb96b52 e5d0d0a b3117af c0fab16 e5d0d0a 7a28165 e5d0d0a 7a28165 e5d0d0a bb96b52 e5d0d0a bb96b52 96b8fbe 0a5d4dc 96b8fbe bb96b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- librispeech_asr
metrics:
- f1
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: weights
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-gender-recognition-librispeech
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Librispeech-clean-100 for gender recognition.
It achieves the following results on the evaluation set:
- Loss: 0.0061
- F1: 0.9993
### Compute your inferences
```python
import os
import random
from glob import glob
from typing import List, Optional, Union, Dict
import tqdm
import torch
import torchaudio
import numpy as np
import pandas as pd
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import functional as F
from transformers import (
AutoFeatureExtractor,
AutoModelForAudioClassification,
Wav2Vec2Processor
)
class CustomDataset(torch.utils.data.Dataset):
def __init__(
self,
dataset: List,
basedir: Optional[str] = None,
sampling_rate: int = 16000,
max_audio_len: int = 5,
):
self.dataset = dataset
self.basedir = basedir
self.sampling_rate = sampling_rate
self.max_audio_len = max_audio_len
def __len__(self):
"""
Return the length of the dataset
"""
return len(self.dataset)
def __getitem__(self, index):
if self.basedir is None:
filepath = self.dataset[index]
else:
filepath = os.path.join(self.basedir, self.dataset[index])
speech_array, sr = torchaudio.load(filepath)
if speech_array.shape[0] > 1:
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
if sr != self.sampling_rate:
transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
speech_array = transform(speech_array)
sr = self.sampling_rate
len_audio = speech_array.shape[1]
# Pad or truncate the audio to match the desired length
if len_audio < self.max_audio_len * self.sampling_rate:
# Pad the audio if it's shorter than the desired length
padding = torch.zeros(1, self.max_audio_len * self.sampling_rate - len_audio)
speech_array = torch.cat([speech_array, padding], dim=1)
else:
# Truncate the audio if it's longer than the desired length
speech_array = speech_array[:, :self.max_audio_len * self.sampling_rate]
speech_array = speech_array.squeeze().numpy()
return {"input_values": speech_array, "attention_mask": None}
class CollateFunc:
def __init__(
self,
processor: Wav2Vec2Processor,
padding: Union[bool, str] = True,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: bool = True,
sampling_rate: int = 16000,
max_length: Optional[int] = None,
):
self.sampling_rate = sampling_rate
self.processor = processor
self.padding = padding
self.pad_to_multiple_of = pad_to_multiple_of
self.return_attention_mask = return_attention_mask
self.max_length = max_length
def __call__(self, batch: List[Dict[str, np.ndarray]]):
# Extract input_values from the batch
input_values = [item["input_values"] for item in batch]
batch = self.processor(
input_values,
sampling_rate=self.sampling_rate,
return_tensors="pt",
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_attention_mask=self.return_attention_mask
)
return {
"input_values": batch.input_values,
"attention_mask": batch.attention_mask if self.return_attention_mask else None
}
def predict(test_dataloader, model, device: torch.device):
"""
Predict the class of the audio
"""
model.to(device)
model.eval()
preds = []
with torch.no_grad():
for batch in tqdm.tqdm(test_dataloader):
input_values, attention_mask = batch['input_values'].to(device), batch['attention_mask'].to(device)
logits = model(input_values, attention_mask=attention_mask).logits
scores = F.softmax(logits, dim=-1)
pred = torch.argmax(scores, dim=1).cpu().detach().numpy()
preds.extend(pred)
return preds
def get_gender(model_name_or_path: str, audio_paths: List[str], label2id: Dict, id2label: Dict, device: torch.device):
num_labels = 2
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
model = AutoModelForAudioClassification.from_pretrained(
pretrained_model_name_or_path=model_name_or_path,
num_labels=num_labels,
label2id=label2id,
id2label=id2label,
)
test_dataset = CustomDataset(audio_paths, max_audio_len=5) # for 5-second audio
data_collator = CollateFunc(
processor=feature_extractor,
padding=True,
sampling_rate=16000,
)
test_dataloader = DataLoader(
dataset=test_dataset,
batch_size=16,
collate_fn=data_collator,
shuffle=False,
num_workers=2
)
preds = predict(test_dataloader=test_dataloader, model=model, device=device)
return preds
model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"
audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
label2id = {
"female": 0,
"male": 1
}
id2label = {
0: "female",
1: "male"
}
num_labels = 2
preds = get_gender(model_name_or_path, audio_paths, label2id, id2label, device)
```
## Training and evaluation data
The Librispeech-clean-100 dataset was used to train the model, with 70% of the data used for training, 10% for validation, and 20% for testing.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.002 | 1.0 | 1248 | 0.0061 | 0.9993 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Tokenizers 0.13.3 |