File size: 6,957 Bytes
96b8fbe
 
 
 
86366c6
 
96b8fbe
 
86366c6
96b8fbe
 
 
 
 
 
 
 
0a5d4dc
96b8fbe
e8e9953
96b8fbe
 
 
 
bb96b52
 
 
e5d0d0a
7a28165
 
e5d0d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb96b52
 
e5d0d0a
 
bb96b52
e5d0d0a
bb96b52
e5d0d0a
 
bb96b52
 
e5d0d0a
bb96b52
e5d0d0a
 
 
 
 
bb96b52
c0fab16
e5d0d0a
 
 
 
7a28165
e5d0d0a
7a28165
e5d0d0a
bb96b52
7a28165
e5d0d0a
 
 
 
7a28165
c0fab16
7a28165
c0fab16
 
 
 
 
 
 
 
7a28165
e5d0d0a
7a28165
c0fab16
bb96b52
e5d0d0a
 
 
 
 
 
 
7a28165
e5d0d0a
7a28165
e5d0d0a
 
7a28165
 
e5d0d0a
7a28165
 
bb96b52
7a28165
 
 
bb96b52
7a28165
 
 
 
bb96b52
 
 
7a28165
bb96b52
 
7a28165
 
 
 
bb96b52
 
e5d0d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3117af
c0fab16
e5d0d0a
 
 
 
 
 
 
 
 
 
 
7a28165
e5d0d0a
 
 
 
 
 
 
7a28165
e5d0d0a
 
 
bb96b52
 
 
 
 
 
 
 
 
 
 
 
e5d0d0a
bb96b52
 
 
96b8fbe
 
0a5d4dc
96b8fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb96b52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- librispeech_asr
metrics:
- f1
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: weights
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-53-gender-recognition-librispeech

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Librispeech-clean-100 for gender recognition.
It achieves the following results on the evaluation set:
- Loss: 0.0061
- F1: 0.9993

### Compute your inferences

```python
import os
import random
from glob import glob
from typing import List, Optional, Union, Dict

import tqdm
import torch
import torchaudio
import numpy as np
import pandas as pd
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import functional as F
from transformers import (
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    Wav2Vec2Processor
)

class CustomDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        dataset: List,
        basedir: Optional[str] = None,
        sampling_rate: int = 16000,
        max_audio_len: int = 5,
    ):
        self.dataset = dataset
        self.basedir = basedir

        self.sampling_rate = sampling_rate
        self.max_audio_len = max_audio_len

    def __len__(self):
        """
        Return the length of the dataset
        """
        return len(self.dataset)

    def __getitem__(self, index):
        if self.basedir is None:
            filepath = self.dataset[index]
        else:
            filepath = os.path.join(self.basedir, self.dataset[index])

        speech_array, sr = torchaudio.load(filepath)

        if speech_array.shape[0] > 1:
            speech_array = torch.mean(speech_array, dim=0, keepdim=True)

        if sr != self.sampling_rate:
            transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
            speech_array = transform(speech_array)
            sr = self.sampling_rate

        len_audio = speech_array.shape[1]

        # Pad or truncate the audio to match the desired length
        if len_audio < self.max_audio_len * self.sampling_rate:
            # Pad the audio if it's shorter than the desired length
            padding = torch.zeros(1, self.max_audio_len * self.sampling_rate - len_audio)
            speech_array = torch.cat([speech_array, padding], dim=1)
        else:
            # Truncate the audio if it's longer than the desired length
            speech_array = speech_array[:, :self.max_audio_len * self.sampling_rate]

        speech_array = speech_array.squeeze().numpy()

        return {"input_values": speech_array, "attention_mask": None}


class CollateFunc:
    def __init__(
        self,
        processor: Wav2Vec2Processor,
        padding: Union[bool, str] = True,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: bool = True,
        sampling_rate: int = 16000,
        max_length: Optional[int] = None,
    ):
        self.sampling_rate = sampling_rate
        self.processor = processor
        self.padding = padding
        self.pad_to_multiple_of = pad_to_multiple_of
        self.return_attention_mask = return_attention_mask
        self.max_length = max_length

    def __call__(self, batch: List[Dict[str, np.ndarray]]):
        # Extract input_values from the batch
        input_values = [item["input_values"] for item in batch]

        batch = self.processor(
            input_values,
            sampling_rate=self.sampling_rate,
            return_tensors="pt",
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_attention_mask=self.return_attention_mask
        )

        return {
            "input_values": batch.input_values,
            "attention_mask": batch.attention_mask if self.return_attention_mask else None
        }


def predict(test_dataloader, model, device: torch.device):
    """
    Predict the class of the audio
    """
    model.to(device)
    model.eval()
    preds = []

    with torch.no_grad():
        for batch in tqdm.tqdm(test_dataloader):
            input_values, attention_mask = batch['input_values'].to(device), batch['attention_mask'].to(device)

            logits = model(input_values, attention_mask=attention_mask).logits
            scores = F.softmax(logits, dim=-1)

            pred = torch.argmax(scores, dim=1).cpu().detach().numpy()

            preds.extend(pred)

    return preds


def get_gender(model_name_or_path: str, audio_paths: List[str], label2id: Dict, id2label: Dict, device: torch.device):
    num_labels = 2

    feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
    model = AutoModelForAudioClassification.from_pretrained(
        pretrained_model_name_or_path=model_name_or_path,
        num_labels=num_labels,
        label2id=label2id,
        id2label=id2label,
    )

    test_dataset = CustomDataset(audio_paths, max_audio_len=5)  # for 5-second audio

    data_collator = CollateFunc(
        processor=feature_extractor,
        padding=True,
        sampling_rate=16000,
    )

    test_dataloader = DataLoader(
        dataset=test_dataset,
        batch_size=16,
        collate_fn=data_collator,
        shuffle=False,
        num_workers=2
    )

    preds = predict(test_dataloader=test_dataloader, model=model, device=device)

    return preds

model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"

audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

label2id = {
    "female": 0,
    "male": 1
}

id2label = {
    0: "female",
    1: "male"
}

num_labels = 2

preds = get_gender(model_name_or_path, audio_paths, label2id, id2label, device)
```


## Training and evaluation data

The Librispeech-clean-100 dataset was used to train the model, with 70% of the data used for training, 10% for validation, and 20% for testing.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.002         | 1.0   | 1248 | 0.0061          | 0.9993 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Tokenizers 0.13.3