--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - dstefa/New_York_Times_Topics metrics: - accuracy model-index: - name: DistilBERT base classify news topics - Devinit results: - task: name: Text Classification type: text-classification dataset: name: New York Times Topics type: dstefa/New_York_Times_Topics metrics: - name: Accuracy type: accuracy value: 0.913482481060606 widget: - text: "Insurers: Costs Would Skyrocket Under House Health Bill." --- # DistilBERT base classify news topics - Devinit This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the New York Times Topics dataset. It achieves the following results on the evaluation set: - Loss: 0.2871 - Accuracy: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.386 | 1.0 | 1340 | 0.3275 | 0.8921 | | 0.2833 | 2.0 | 2680 | 0.2840 | 0.9033 | | 0.2411 | 3.0 | 4020 | 0.2694 | 0.9102 | | 0.2069 | 4.0 | 5360 | 0.2665 | 0.9114 | | 0.1796 | 5.0 | 6700 | 0.2657 | 0.9128 | | 0.1636 | 6.0 | 8040 | 0.2674 | 0.9142 | | 0.144 | 7.0 | 9380 | 0.2761 | 0.9129 | | 0.1277 | 8.0 | 10720 | 0.2820 | 0.9125 | | 0.1201 | 9.0 | 12060 | 0.2853 | 0.9136 | | 0.1104 | 10.0 | 13400 | 0.2871 | 0.9135 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0