File size: 1,175 Bytes
8c8ad3e b0a4745 8c8ad3e dc6cdba 8c8ad3e b0a4745 8c8ad3e 945b3ad 8c8ad3e 79f3df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
---
language:
- da
license: cc-by-sa-4.0
datasets:
- DDSC/twitter-sent
- DDSC/europarl
widget:
- text: Jeg tror alligvel, det bliver godt
---
# Danish BERT Tone for the detection of subjectivity/objectivity
The BERT Tone model detects whether a text (in Danish) is subjective or objective.
The model is based on the finetuning of the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO.
See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone) for more details.
Here is how to use the model:
```python
from transformers import BertTokenizer, BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained("alexandrainst/da-subjectivivity-classification-base")
tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-subjectivivity-classification-base")
```
## Training data
The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets. |