Zero-Shot Classification
Transformers
PyTorch
Safetensors
bert
text-classification
Inference Endpoints
saattrupdan commited on
Commit
807496d
1 Parent(s): f4e7bde

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -14
README.md CHANGED
@@ -78,12 +78,13 @@ The Scandinavian scores are the average of the Danish, Swedish and Norwegian sco
78
 
79
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
80
  | :-------- | :------------ | :--------- | :----------- | :----------- |
81
- | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | asd | asd | asd | 354M |
82
- | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | asd | asd | asd | 279M |
83
- | `alexandrainst/scandi-nli-base` (this) | asd | asd | asd | 178M |
 
84
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 63.94% | 70.41% | 77.23% | 279M |
85
- | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | asd | asd | asd | 560M |
86
- | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | asd | asd | asd | **22M** |
87
 
88
 
89
  ### Danish Evaluation
@@ -97,6 +98,7 @@ We use a test split of the [DanFEVER dataset](https://aclanthology.org/2021.noda
97
  | `alexandrainst/scandi-nli-base` (this) | 62.44% | 55.00% | 80.42% | 178M |
98
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 52.79% | 52.00% | 72.35% | 279M |
99
  | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 49.18% | 50.31% | 69.73% | 560M |
 
100
  | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | 47.28% | 48.88% | 73.46% | **22M** |
101
 
102
 
@@ -108,12 +110,13 @@ We acknowledge that not evaluating on a gold standard dataset is not ideal, but
108
 
109
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
110
  | :-------- | :------------ | :--------- | :----------- | :----------- |
111
- | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | asd | asd | asd | 354M |
112
- | `alexandrainst/scandi-nli-base` (this) | asd | asd | asd | 178M |
113
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 73.84% | 82.46% | 82.58% | 279M |
114
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 73.32% | 82.15% | 82.08% | 279M |
115
- | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | asd | asd | asd | 560M |
116
- | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | asd | asd | asd | **22M** |
 
117
 
118
 
119
  ### Norwegian Evaluation
@@ -124,13 +127,13 @@ We acknowledge that not evaluating on a gold standard dataset is not ideal, but
124
 
125
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
126
  | :-------- | :------------ | :--------- | :----------- | :----------- |
127
- | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | asd | asd | asd | 354M |
 
 
128
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 65.33% | 76.73% | 76.65% | 279M |
129
- | `alexandrainst/scandi-nli-base` (this) | asd | asd | asd | 178M |
130
- | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | asd | asd | asd | 178M |
131
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 65.18% | 76.76% | 76.77% | 279M |
132
- | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | asd | asd | asd | 560M |
133
- | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | asd | asd | asd | **22M** |
134
 
135
 
136
  ## Training procedure
 
78
 
79
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
80
  | :-------- | :------------ | :--------- | :----------- | :----------- |
81
+ | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **73.70** | **74.44** | **83.91** | 354M |
82
+ | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 69.01% | 71.99% | 80.66% | 279M |
83
+ | `alexandrainst/scandi-nli-base` (this) | 67.42% | 71.54% | 80.09% | 178M |
84
+ | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 64.17% | 70.80% | 77.29% | 560M |
85
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 63.94% | 70.41% | 77.23% | 279M |
86
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 61.71% | 68.36% | 76.08% | 178M |
87
+ | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | 56.02% | 65.30% | 73.56% | **22M** |
88
 
89
 
90
  ### Danish Evaluation
 
98
  | `alexandrainst/scandi-nli-base` (this) | 62.44% | 55.00% | 80.42% | 178M |
99
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 52.79% | 52.00% | 72.35% | 279M |
100
  | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 49.18% | 50.31% | 69.73% | 560M |
101
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 56.92% | 53.25% | 76.39% | 178M |
102
  | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | 47.28% | 48.88% | 73.46% | **22M** |
103
 
104
 
 
110
 
111
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
112
  | :-------- | :------------ | :--------- | :----------- | :----------- |
113
+ | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **76.69%** | **84.47%** | **84.38%** | 354M |
114
+ | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 75.35% | 83.42% | 83.55% | 560M |
115
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 73.84% | 82.46% | 82.58% | 279M |
116
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 73.32% | 82.15% | 82.08% | 279M |
117
+ | `alexandrainst/scandi-nli-base` (this) | 72.29% | 81.37% | 81.51% | 178M |
118
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 64.69% | 76.40% | 76.47% | 178M |
119
+ | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | 62.35% | 74.79% | 74.93% | **22M** |
120
 
121
 
122
  ### Norwegian Evaluation
 
127
 
128
  | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** |
129
  | :-------- | :------------ | :--------- | :----------- | :----------- |
130
+ | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **70.61%** | **80.43%** | **80.36%** | 354M |
131
+ | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 67.99% | 78.68% | 78.60% | 560M |
132
+ | `alexandrainst/scandi-nli-base` (this) | 67.53% | 78.24% | 78.33% | 178M |
133
  | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 65.33% | 76.73% | 76.65% | 279M |
 
 
134
  | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 65.18% | 76.76% | 76.77% | 279M |
135
+ | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 63.51% | 75.42% | 75.39% | 178M |
136
+ | [`alexandrainst/scandi-nli-small`](https://huggingface.co/alexandrainst/scandi-nli-small) | 58.42% | 72.22% | 72.30% | **22M** |
137
 
138
 
139
  ## Training procedure