--- license: apache-2.0 tags: - text-generation - transformers - language-model - bigram-model - lafontaine model-index: - name: Lafontaine GPT Model results: - task: type: text-generation dataset: name: La Fontaine's Fables type: custom metrics: - type: Perplexity value: 15.2 --- # Lafontaine GPT Model This is a language model based on La Fontaine's fables. It uses a transformer-based architecture to generate text inspired by La Fontaine's style. ## Using the Model with Gradio To interact with the model, you can use the following Gradio script: ```python import gradio as gr import torch # Assuming 'BigramLanguageModel' and 'decode' are defined as in your model code class GradioInterface: def __init__(self, model_path="lafontaine_gpt_v1.pth"): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.model = self.load_model(model_path) self.model.eval() def load_model(self, model_path): model = BigramLanguageModel().to(self.device) model.load_state_dict(torch.load(model_path, map_location=self.device)) return model def generate_text(self, input_text, max_tokens=100): context = torch.tensor([encode(input_text)], dtype=torch.long, device=self.device) output = self.model.generate(context, max_new_tokens=max_tokens) return decode(output[0].tolist()) # Load the model model_interface = GradioInterface() # Define Gradio interface gr_interface = gr.Interface( fn=model_interface.generate_text, inputs=["text", gr.Slider(50, 500)], outputs="text", description="Bigram Language Model text generation. Enter some text, and the model will continue it.", examples=[["Once upon a time"]] ) # Launch the interface gr_interface.launch() ``` ## Model Details - **Architecture**: Transformer-based bigram language model - **Dataset**: La Fontaine's fables ## How to Use You can use this model in your own projects by loading the model weights and running it on your input text.