File size: 2,038 Bytes
beb9cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model-index:
- name: Tukan-1.1B-Chat-v0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Tukan-1.1B-Chat-v0.1

This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0546

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 36
- total_train_batch_size: 216
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1912        | 0.28  | 10   | 1.1099          |
| 1.1238        | 0.55  | 20   | 1.0655          |
| 1.1258        | 0.83  | 30   | 1.0550          |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.2.0a0+gitd925d94
- Datasets 2.14.6
- Tokenizers 0.15.0
## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16

### Framework versions


- PEFT 0.6.1