File size: 1,391 Bytes
60e4354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
import torch.nn.functional as F
from torch_geometric.nn import GATConv

class GAT(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels, num_layers, dropout, num_heads=4):
        super(GAT, self).__init__()
        self.convs = torch.nn.ModuleList()
        self.convs.append(GATConv(in_channels, hidden_channels, heads=num_heads, concat=False))
        self.bns = torch.nn.ModuleList()
        self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
        for _ in range(num_layers - 2):
            self.convs.append(GATConv(hidden_channels, hidden_channels, heads=num_heads, concat=False))
            self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
        self.convs.append(GATConv(hidden_channels, out_channels, heads=num_heads, concat=False))
        self.dropout = dropout

    def reset_parameters(self):
        for conv in self.convs:
            conv.reset_parameters()
        for bn in self.bns:
            bn.reset_parameters()

    def forward(self, x, edge_index, edge_attr):
        for i, conv in enumerate(self.convs[:-1]):
            x = conv(x, edge_index=edge_index, edge_attr=edge_attr)
            x = self.bns[i](x)
            x = F.relu(x)
            x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.convs[-1](x,edge_index=edge_index, edge_attr=edge_attr)
        return x, edge_attr